

Al Albayt University

Prince Hussein Bin Abdullah College for Information Technology Department of Computer Science VELOCITY AND CONGESTION-AWARE ROUTING PROTOCOL FOR MOBILE AD-HOC NETWORKS

بروتوكول لتحديد المسارات في الشبكات الخاصة المتحركة اعتماداً على السرعة والازدحام

By

Ahmad Mohammad Al-Maddan

Supervisor

Prof. Ismail Ababneh

This Thesis was Submitted in Partial Fulfillment of the Requirements for

the Master's Degree of Computer Science

Deanship of Graduate Studies

Al al-Bayt University

First Semester, 2016/2017

T

تفويض

أنا أحمد محمد عقلة المدّان ،أفوض جامعة آل البيت بتزويد نسخ من رسالتي للمكتبات أو المؤسسات أو الهيئات أو الأشخاص عند طلبهم حسب التعليمات النافذة في الجامعة.

التوقيع :

التاريخ : ۲۰۱۷/۱/۹

إقرار والتزام بقوانين جامعة آل البيت وأنظمتها وتعليماتها لطلبة الماجستير والدكتوراه

أنا الطالب : أحمد محمد عقله المدّان الرقم الجامعي : ١٣٢٠٩٠١٠٢٩ التخصص : علم الحاسوب الكلية : الأمير الحسين بن عبدالله الثاني لتكنولوجيا المعلومات

أعلن بأنني قد التزمت بقوانين جامعة آل البيت وأنظمتها وتعليماتها وقراراتها السارية المفعول المتعلقة بإعداد رسائل الماجستير والدكتوراه عندما قمت شخصيا بإعداد رسالتي بعنوان :

Velocity and Congestion-aware Routing Protocol For Mobile Ad-hoc Networks

وذلك بما ينسجم مع الأمانة العلمية المتعارف عليها في كتابة الرسائل والأطاريح العلمية. كما أنني أعلن بأن رسالتي هذه غير منقولة أو مستله من رسائل أو أطاريح أو كتب أو أبحاث أو أي منشورات علمية تم نشرها أو تحزينها في أية وسيلة إعلامية، وتأسيساً على ما تقدم فأنني أتحمل المسؤولية بأنواعها كافة فيما لو تبين غير ذلك بما فيه حق مجلس العمداء في جامعة آل البيت بإلغاء قرار منحي الدرجة العلمية التي حصلت عليها وسحب شهادة التخرج مني بعد صدورها دون أن يكون لي حق في التظلم او الاعتراض أو الطعن بأي صورة كانت في القرار الصادر عن مجلس العمداء بهذا الصدد.

توقيع الطالب : ٢٠١٧/١/٩ م التاريخ : ٢٠١٧/١/٩م

III

COMMITTEE DESCISION

This Thesis (VELOCITY AND CONGESTION-AWARE ROUTING PROTOCOL FOR MOBILE AD-HOC NETWORKS) was Successfully Defended and Approved on 3/1/2017

Examination Committee

Prof. Ismail Ababneh

Dr. Saad Bani-Mohammad

Signature

ababal

U

Dr. Omar Shatnawi

Dr. Wail Mardini

DEDICATION

I dedicate this thesis to my great father Mohammed Al-Maddan, my lovely mother Sokout, you have successfully made me the person I am becoming.

To my lovely wife Duha Malw-Elain, and my beautiful daughter Mira, you are always the most important part of my success.

To all my family, for their support.

ACKNOWLEDGMENTS

First and foremost, I would like to thank God for his blessings. I am forever grateful to Prof. Ismail Ababneh for having accepted to be my thesis advisor. His patience, guidance, and assistance were essentials in finishing this work.

Another thank to the examination committee members for their comments that have contributed to improving this work.

TABLE OF CONTENTS

Contents DEDICATIONV
ACKNOWLEDGMENTSVI
TABLE OF CONTENTS
LIST OF TABLESX
LIST OF FIGURESXI
LIST OF ABBREVIATIONSXIII
LIST OF APPENDICESXIV
ABSTRACTXV
CHAPTER ONE: INTRODUCTION
1-1MANET Characteristics
1-2MANET Applications
1-3 Routing in MANETs4
1-3-1 Proactive Routing Protocols
1-3-2 Reactive Routing Protocols5
1-3-3 Hybrid Routing Protocols
1-3-4 Ad-hoc On-demand Distance Vector (AODV) Routing Protocol5
1-4 the Problem and Motivation
1-5 The Objectives of The Study
CHAPTER TWO: RELATED WORKS9
2-1 Associativity-Based Routing Protocol
2-2 Signal Stability-Based Adaptive Routing Protocol10
2-3 Location-Aided Routing Protocol
2-4 Dynamic Load-Aware Routing protocol

2-5 Load aWare Routing Protocol.	12
2-6 Congestion Adaptive Routing Protocol.	12
2-7 Congestion Aware Routing Protocol.	12
2-8 Congestion-Aware Routing Protocols for Ad Hoc networks	13
CHAPTER THREE: THE PROPOSED STUDY	15
3-1 Velocity and Congestion-Aware Routing Protocol	15
3-1-1 Network model.	15
3-1-2 Congestion Metrics	15
3-1-3 Node Movement Metric.	16
3-1-4 VCAR Design	16
3-1-4-1 VCAR Control Packets	19
3-1-4-2 Route Discovery Phase	20
3-1-4-3 Route Reply Phase.	21
3-1-4-4 Route Maintenance Phase.	22
3-1-4-5 VCAR Versions	22
CHAPTER FOUR: THE SIMULATION	23
4-1 NS-2 simulator Architecture	23
4-2 Simulation environment	23
4-3 Experiments Design	26
4-3-1 Creating Traffic Connection File	26
4-3-2 Creating nodes movement file	27
4-4 Performance Comparison Metrics	29
4-4-1 Packet Delivery Ratio	29
4-4-2 Average End-to-End Delay	29
4.4.3 Pouting overhead	20

4-4-4 Energy Consumption Percentage	30
CHAPTER FIVE: RESULTS AND DISCUSSION	31
5-1 Packet Delivery Ratio	32
5-2 Average End-to-End Delay	14
5-3 Routing Overhead	56
5-4 Energy Consumption Percentage	58
CHAPTER SIX: CONCLUSIONS AND FUTURE WORK	31
6-1 Conclusions	31
6-2 Future Work	32
REFERENCES	33
88	36
APPENDIX A: RESULTS WHEN α=0.25	38
APPENDIX B: RESULTS WHEN α=0.75) 6
APPENDIX C: 95% CONFIDENCE IINTERVAL OF PACKET 10)4
APPENDIX D: 95% CONFIDENCE INTERVEL OF END-TO-END 11	11
APPENDIX E: 95% CONFIDENCE INTERVAL OF ROUTING 11	17
APPENDIX F: 95% CONFIDENCE INTERVAL OF ENERGY	24

Table	Page
Table 3-1: Accumulative and Maximum CMF Values	18
Table 3-2: VCAR Versions	22
Table 4-1: Models Used for Different Layers	24
Table 4-2: Simulation Parameters	24
Table 4-3: Traffic Connection Files	27
Table 4-4: Nodes' Movement Files	28
Table A-1: Packet Delivery Ratio when α=0.25	88
Table A-2: Average End-to-End Delay when α=0.25	90
Table A-3: Routing Overhead when α=0.25	92
Table A-4: Energy Consumption Percentage when α=0.25	94
Table B-1: Packet Delivery Ratio when α=0.75	96
Table B-2: Average End-to-End Delay when α=0.75	98
Table B-3: Routing Overhead when α=0.75	100
Table B-4: Energy Consumption Percentage when α=0.75	102
Table C-1: Confidence Interval of Packet Delivery Ratio with Pause Time=0	104
Table C-2: Confidence Interval of Packet Delivery Ratio with Pause Time=300	107
Table D-1: Confidence Interval of End-to-End Delay with Pause Time=0	110
Table D-2: Confidence Interval of End-to-End Delay with Pause Time=300	113
Table E-1: Confidence Interval of Routing Overhead with Pause Time=0	116
Table E-2: Confidence Interval of Routing Overhead with Pause Time=300	119
Table F-1: Confidence Interval of Energy Consumption Percentage with Pause	122
Time=0	
Table F-2: Confidence Interval of Energy Consumption Percentage with PauseTime=300	125

LIST OF FIGURES

Figure	Page
Figure 1-1: Node Transmission Range	2
Figure 1-2: Node Mobility Causes Topology Change in MANET	3
Figure 1-3: Shortest Path Leads to Congested Nodes	7
Figure 3-1: Each Node in a MANET Has its Own CMF Value	17
Figure 5-1: Packet Delivery Ratio for 5 sources each one sends 1 packet/s	33
Figure 5-2: Packet Delivery Ratio for 5 sources each one sends 2 packets/s	34
Figure 5-3: Packet Delivery Ratio for 5 sources each one sends 4 packets/s	35
Figure 5-4: Packet Delivery Ratio for 5 sources each one sends 6 packets/s	36
Figure 5-5: Packet Delivery Ratio for 10 sources each one sends 1 packet/s	37
Figure 5-6: Packet Delivery Ratio for 10 sources each one sends 2 packets/s	38
Figure 5-7: Packet Delivery Ratio for 10 sources each one sends 4 packets/s	39
Figure 5-8: Packet Delivery Ratio for 10 sources each one sends 6 packets/s	40
Figure 5-9: Packet Delivery Ratio for 15 sources each one sends 1 packet/s	41
Figure 5-10: Packet Delivery Ratio for 15 sources each one sends 2 packets/s	42
Figure 5-11: Packet Delivery Ratio for 15 sources each one sends 4 packets/s	43
Figure 5-12: Packet Delivery Ratio for 15 sources each one sends 6 packets/s	44
Figure 5-13: Average End-to-End Delay for 5 sources each one sends 1 packet/s	45
Figure 5-14: Average End-to-End Delay for 5 sources each one sends 2 packets/s	46
Figure 5-15: Average End-to-End Delay for 5 sources each one sends 4 packets/s	47
Figure 5-16: Average End-to-End Delay for 5 sources each one sends 6 packets/s	48
Figure 5-17: Average End-to-End Delay for 10 sources each one sends 1 packet/s	49
Figure 5-18: Average End-to-End Delay for 10 sources each one sends 2 packets/s	50
Figure 5-19: Average End-to-End Delay for 10 sources each one sends 4 packets/s	51
Figure 5-20: Average End-to-End Delay for 10 sources each one sends 6 packets/s	52
Figure 5-21: Average End-to-End Delay for 15 sources each one sends 1 packet/s	53
Figure 5-22: Average End-to-End Delay for 15 sources each one sends 2 packets/s	54
Figure 5-23: Average End-to-End Delay for 15 sources each one sends 4 packets/s	55
Figure 5-24: Average End-to-End Delay for 15 sources each one sends 6 packets/s	56
Figure 5-25: Routing Overhead for 5 sources each one sends 1 packet/s	57
Figure 5-26: Routing Overhead for 5 sources each one sends 2 packets/s	58
Figure 5-27: Routing Overhead for 5 sources each one sends 4 packets/s	59
Figure 5-28: Routing Overhead for 5 sources each one sends 6 packets/s	60
Figure 5-29: Routing Overhead for 10 sources each one sends 1 packet/s	61
Figure 5-30: Routing Overhead for 10 sources each one sends 2 packets/s	62
Figure 5-31: Routing Overhead for 10 sources each one sends 4 packets/s	63
Figure 5-32: Routing Overhead for 10 sources each one sends 6 packets/s	64
Figure 5-33: Routing Overhead for 15 sources each one sends 1 packet/s	65
Figure 5-34: Routing Overhead for 15 sources each one sends 2 packets/s	66
Figure 5-35: Routing Overhead for 15 sources each one sends 4 packets/s	67
Figure 5-36: Routing Overhead for 15 sources each one sends 6 packets/s	68
Figure 5-37: Energy Consumption Percentage for 5 sources each one sends 1 packet/s	69
Figure 5-38: Energy Consumption Percentage for 5 sources each one sends 2 packets/s	70

Figure 5-39: Energy Consumption Percentage for 5 sources each one sends 4 packets/s	71
Figure 5-40: Energy Consumption Percentage for 5 sources each one sends 6 packets/s	72
Figure 5-41: Energy Consumption Percentage for 10 sources each one sends 1 packet/s	73
Figure 5-42: Energy Consumption Percentage for 10 sources each one sends 2 packets/s-	74
Figure 5-43: Energy Consumption Percentage for 10 sources each one sends 4 packets/s	75
Figure 5-44: Energy Consumption Percentage for 10 sources each one sends 6 packets/s	76
Figure 5-45: Energy Consumption Percentage for 15 sources each one sends 1 packet/s	77
Figure 5-46: Energy Consumption Percentage for 15 sources each one sends 2 packets/s	78
Figure 5-47: Energy Consumption Percentage for 15 sources each one sends 4 packets/s	79
Figure 5-48: Energy Consumption Percentage for 15 sources each one sends 6 packets/s	80

LIST OF ABBREVIATIONS

Abbreviation	Meaning
AODV	Ad hoc On-Demand Distance Vector
ABR	Associativity-Based Routing
CRP	Congestion adaptive Routing Protocol
CARM	Congestion Aware Routing protocol for Mobile ad hoc networks
CF	Congestion Factor
CMF	Congestion-Movement Factor
CBR	Constant Bit Rate
DSDV	Destination-Sequence Distance-Vector
DLAR	Dynamic Load-Aware Routing
DSR	Dynamic Source Routing
GPS	Global Positioning System
LWR	Load aWare Routing
LAR	Location-Aided Routing
MANET	Mobile Ad hoc NETwork.
OTCL	Object oriented extension Tool Command Language
PT	Pause Time
RERR	Route Error
RREQ	Route Request
RREP	Route Reply
SSA	Signal Stability-based Adaptive
TORA	Temporally-Ordered Routing Algorithm
VCAR	Velocity and Congestion-Aware Routing
WCD	Weighted Channel Delay
WRP	Wireless Routing Protocol
ZRP	Zone Routing Protocol

LIST OF APPENDICES

Appendix	Page
Appendix A: Results when α=0.25	88
Appendix B: Results when α=0.75	96
Appendix C: 95% Confidence Interval of Packet Delivery Ratio when α=0.50	104
Appendix D: 95% Confidence Interval of End-to-End Delay when α=0.50	110
Appendix E: 95% Confidence Interval of Routing Overhead when α=0.50	116
Appendix F: 95% Confidence Interval of Energy Consumption Percentage when	122
α=0.50	

ABSTRACT

Mobile Ad-hoc NETworks (MANETs) are wireless infrastructure-less networks built from mobile nodes. Nodes in MANETs need routes between them when they attempt to communicate. They use a routing algorithm to find and maintain such routes. Most routing protocols proposed for MANETs are designed to find a valid route from source to destination without considering network traffic load and mobility of nodes. There are some algorithms that do consider only congestion when selecting the path from source to destination. The problem with such algorithms is selecting unstable routes, and increases the number of link failures in the network, and consequently increases the packets loss. While there are other algorithms based only on nodes velocity. This type of algorithms selects congested routes for transmitting, and consequently increasing the end-to-end delay of the packets.

In this thesis, we propose a Velocity and Congestion-Aware Routing (VCAR) protocol that aims to select the most stable and least congested intermediate nodes. The VCAR protocol uses two metrics when selecting the best route between source and destination: the congestion level and velocity of intermediate nodes.

To estimate the congestion level at intermediate nodes, we use two metrics: the interface queue length: Qlen, and the number of routes that the node participates in: R. These metrics are measured by the nodes themselves.

We use two approaches to select the route between the source and the destination. The first approach selects the route with the least accumulative value for all intermediate nodes in the path. While the second approach selects the route with the least maximum value among all intermediate nodes in the path.

XV

We implement four versions of VCAR. The first version selects the best route using the least accumulative value of Qlen and velocity for all intermediate nodes. The second version selects the best route using the least maximum value of Qlen and velocity among all intermediate nodes. The third version selects the best route using the least accumulative value of R and velocity for all intermediate nodes, and the fourth version selects the best route using the least maximum value of R and velocity among all intermediate nodes.

The NS2 simulator was used to implement the VCAR protocols, and extensive simulations were conducted to analyze the performance of VCAR variants against the Ad Hoc on-Demand Vector (AODV) protocol. The results show that VCAR variants always outperform AODV in terms of packet delivery ratio, average end-to-end delay, and energy consumption percentage, but the routing overhead was higher.

CHAPTER ONE: INTRODUCTION.

Wireless communication has been widely used during the last decades, because this type of communication can offer services to users anywhere and at any time. Wireless communication can either have infrastructure or be infrastructure-less. The first class needs an infrastructure, and nodes can only communicate through a central device. While the second one does not need any infrastructure or central administration and is commonly known as ad hoc [15, 23, 26, 28]. MANETs are common infrastructure-less wireless networks [15, 24, 25, 28].

A MANET is usually defined as a set of mobile nodes without any infrastructure or central administration. The nodes are free to move around in any direction. Each node in a MANET has a limited transmission range and can operate as a host and as a router [8, 13, 14, 15, 28]. The node can directly send a message to all other nodes within its transmission range, but for the nodes outside the transmission range, the message should be forwarded to the destination via other intermediate nodes in the MANET [8, 23]. To route a messages in the MANET, a routing algorithm is needed to allow the node to discover and maintain a route to the destination.

1-1MANET Characteristics

MANETs have several characteristics that are very important to be understood when studying the nature of this type of networks [15, 28]. The following summarizes these characteristics:

1. Each node in a MANET has a limited transmission range [4]. A route is needed to reach nodes outside this range. As shown in Figure 1-1, node B lies within the transmission range of node A, so a direct message can be sent from node A to node B,

1

while a route is needed between node A and node C because node C lies outside the transmission range of node A.

Figure 1-1: Node Transmission Range

2. Each node in a MANET is battery-powered and the power is quickly consumed because each node acts as a host and as a router [4].

3. The nodes in a MANET are free to move around in any direction and this makes the topology change frequently. This characteristic should be taken into account when designing the routing algorithm. Figure 1-2 shows the effect of mobility on the communication of nodes. In Figure 1-2(b) node B has moved so that it is now outside the transmission range of node A. When node A needs to communicate with node B, it must send the message to node C, which sends it to node B.

2

Figure 1-2: Node Mobility Causes Topology Change in MANET

1-2MANET Applications

MANETs can be used when building a fixed network is expensive or hard to do [25]. MANETs have been proposed for use in many industrial and commercial fields [24]:

1. MANETs have been used in wireless sensor network applications. These applications are used mainly in environmental fields, such as data tracking and remote sensing for weather forecasting.

2. MANETs have been proposed for some civilian applications, such as search and rescue operations, and disaster relief efforts in areas where there is no network infrastructure.

3. MANETs have been used in military applications because of their rapid deployment capability.

1-3 Routing in MANETs

When studying MANETs, one of the most important questions is how mobile nodes can communicate with each other without any infra-structure using wireless media. The answer is that each node needs to maintain a routing path to nodes with which it needs to communicate. Many routing algorithms were proposed for MANETs.

One of the most important issues that must be considered when designing any routing algorithm is selecting a route that can adapt well to topology changes [13, 29].

Routing influences the overall performance of the MANET. A more efficient routing algorithm leads to a better MANET performance. Routing in MANETs should take into account the mobility of the nodes because nodes are free to move around. The routing information should be updated dynamically. There are mainly three types of routing protocols in MANETs: proactive, reactive, and hybrid [5, 8, 10, 15, 23, 28, 30].

1-3-1 Proactive Routing Protocols.

In proactive routing, each node stores routing information in a table, so this type is also called table-driven routing [5, 23, 30]. When a node needs a route to another node, it finds the route by searching in its routing table. The routing table information is propagated periodically through the network, so that each node has an updated routing table. This type of routing has low latency because the routes are always available in the table, but it suffers high overhead because of periodic routing table updates. Examples of such type of routing include Destination-Sequence Distance-Vector Routing (DSDV) [20], and Wireless Routing Protocol (WRP) [17].

1-3-2 Reactive Routing Protocols.

In reactive routing, the route is determined only when needed, so that it is also called source-initiated on-demand routing [5, 23, 30]. When a node needs to send a message to another node for which it does not have a known route, it first finds a route to that node by flooding the network with a Route Request (RREQ) packet, and then it uses the discovered route to send the message. This type of routing has high latency. However, it has low overhead because routes are determined only when needed. Examples of routing protocols of this type include Ad hoc On-Demand Distance Vector (AODV) protocol [21], and Dynamic Source Routing (DSR) protocol [9].

1-3-3 Hybrid Routing Protocols.

This type of routing combines the advantages of the above two types. In hybrid routing, the routes between nodes are initially discovered proactively, then they are maintained reactively as a result of link failures or topology changes [5, 23, 30]. Examples of this type of routing protocols include Zone Routing Protocol (ZRP) [27], and Temporally-Ordered Routing Algorithm (TORA) [19].

1-3-4 Ad-hoc On-demand Distance Vector (AODV) Routing Protocol.

AODV is a reactive routing protocol proposed in [21]. AODV uses a route discovery process to find the shortest path between the source and the destination. AODV consists of the following phases.

• Route Discovery Phase.

When the source does not know a valid route to the destination it broadcasts a route request (RREQ) packets to all of its neighbors. The RREQ packet has a unique sequence number to

detect duplicate packets. It also includes some other information such as: destination identifier, source identifier, and time to live. Each intermediate node that has been received the RREQ uses the sequence number field to determine if the received RREQ has been previously received or not. Then it will check if it has a valid route to the destination, if so it will send a Route Reply (RREP) packet to the source, otherwise it will rebroadcasts the RREQ packet to all of its neighbors, and the time to live field will decremented by one to prevent packet looping. The RREQ packet continue traveling until it reaches to the destination. When the destination receives the RREQ, it replies with a Route Reply Route (RREP) packet to the intermediate node from which it receives the RREQ. The RREP travels back until it received by the source. [21].

• Route Maintenance Phase.

The route maintenance phase is responsible for detecting any link failure. The node detects any link failure by listening to hello messages from its neighbors. If any link failure is detected, a node broadcasts a Route Erorr (RERR) packet to notify the source that it detects a link break, so that the source will initiate a new RREQ packet to search for a valid route to the destination [25].

1-4 the Problem and Motivation.

Most of reactive protocols proposed for MANETs have been designed to choose the shortest path from source to destination [14]. The shortest path is the path with the smallest number of hops between the source and destination. Using this single metric can lead to a situation in which the nodes that participate in the shortest path are congested while other nodes are idle or lightly-loaded [14, 16]. Figure 1-3 shows such situation in which node D lies in the shortest path in most of the routes because of its location in the middle section of

the MANET, and this increases the probability of congestion at node D. For example, the shortest path from A to F is A->D->F, while other routes are available such as A->C->E->F and A->B->G->F. To avoid such problems, other metrics should be used when selecting the best path.

Figure 1-3: Shortest Path Leads to Congested Nodes

Another problem with such protocols is that nodes in MANET may often move around. The movement of nodes results in dynamic changes in routes, as shown previously in Figure 1-2, and this requires finding new routes. Continuous unpredictable changes in MANET topology increase the overhead in the route maintenance mechanism [13, 29].

To increase the performance of the routing protocol, the route discovery mechanism should take into account both the congestion state and movement of the nodes. The routes in a MANET should be as stable as possible. The metric used in route selection should combine both the congestion level and the movement of nodes in the path selected. Any node participating in a route should have low congestion and low speed.

1-5 The Objectives of The Study

The purpose of this study is to propose a new routing protocol for MANETs called Velocity and Congestion-Aware Routing (VCAR) protocol. VCAR selects the routes between nodes according to both the congestion and velocity of intermediate nodes. VCAR aims to achieve the following goals:

- Reduce the congestion in the network.
- Increase the packet delivery ratio in the network.
- Decrease the average end-to-end delay of packets.
- Decrease the energy consumption of the nodes.

CHAPTER TWO: RELATED WORKS

Routes determined by reactive routing protocols can be congested. Many algorithms have been proposed to solve this congestion problem Most of these algorithms use some metric to measure node congestion, and select the least congested node or route [8, 16, 26].

Routes can be unstable because of node movement in MANETs. Therefore, some routing algorithms use the mobility metric to enhance network performance. These algorithms try to choose route nodes with low mobility so as to discover relatively stable paths. A more stable path decreases the path failure rate and increases the throughput of the network [5].

2-1 Associativity-Based Routing Protocol.

The Associativity-Based Routing (ABR) [29] protocol uses node stability as the main metric in selecting the best path. ABR is a reactive protocol that searches for a route only when a source needs to find a route to a destination. ABR uses an associativity-based scheme in which a route is constructed from nodes that have an associativity state with their neighbors that guarantees stability. Thus, ABR selects routes that are likely to be long-lived. ABR measures node stability by the node's association with its neighbors. ABR finds all the possible routes from source to destination, and then selects the best path according to the selection criteria. The disadvantage of ABR is that it does not consider node congestion in the route selecting process; this may lead to using a route with congested nodes.

2-2 Signal Stability-Based Adaptive Routing Protocol.

The Signal Stability-Based Adaptive (SSA) [3] routing protocol is another on-demand protocol that proposed to perform route discovery by selecting the longest-lived path between source and destination. SSA selects the best route by including signal strength and node location stability. This protocol ranks the channels as strong and weak according to their average signal strength between the two ends of the channel. The node location stability is used by SSA so as to choose the longest-lived route. By considering these two criteria, SSA always chooses strong channels that have existed for a period of time that is greater than some threshold value identified by the protocol. In SSA, the source broadcasts the RREQ packet to all of its neighbors. When any intermediate node receives the request packet, it rebroadcasts it only if it was received over a strong channel. The destination chooses the route of the first arriving request because it is probably shorter and less congested, and sends a reply message that contains the best route. The main disadvantage of SSA is that it works fine only when there are a significant number of strong routes between source and destination.

2-3 Location-Aided Routing Protocol.

The Location-Aided Routing (LAR) [13] protocol was proposed to improve the performance of routing discovery by utilizing the location information of the nodes that are obtained using a Global Positioning System (GPS). LAR uses location information to limit the search of a new route to a small area in the MANET. This small area is called request zone. LAR aims to reduce the overhead by decreasing the number of control packets in the discovery process. Once the request zone is identified, the source searches only within this zone, without flooding all the MANET with RREQ packets. The request zone is

rectangular in shape and is identified by the source. When the source wants to discover a route to the destination, it must identify the request zone of the destination by using some information that includes the previous location and the average speed of the destination. After identifying the request zone, the source broadcasts the RREQ packet only to the nodes that are located within the request zone boundaries. LAR performance depends on both the availability and accuracy of GPS used, and the need to use GPS is the major disadvantage of LAR.

2-4 Dynamic Load-Aware Routing protocol.

Lee and Gerla proposed the Dynamic Load-Aware Routing (DLAR) [14] protocol in 2001. DLAR is a reactive protocol that uses the routing loads of nodes as the main metric to select the best path. In this protocol, the highly loaded nodes are prevented from participating in the routes. The load of a node is measured by the number of packets buffered in its interface queue. This protocol selects always the more stable path, and reduces end-to-end delay. DLAR also controls the congestion states of the active routes and reconstructs them when any node in the path reaches its maximum queue capacity. In DLAR, the source broadcasts a request packet to find a route to the destination, and each intermediate node appends its load and broadcasts the packet again. The receiver can select the best path according to the loads of the intermediate nodes. It selects the path with the lowest aggregate load. The main disadvantage of DLAR is that it has a large overhead caused by the request flooding process in which each intermediate node appends extra information before rebroadcasting the request.

2-5 Load aWare Routing Protocol.

In 2003, a new protocol was proposed by Yi and Gerla. It is called the Load aWare Routing (LWR) [31] protocol. LWR was built using the same idea as DLAR and was proposed to solve the problem of large overhead. LWR is different from DLAR in that each intermediate node has a routing selection scheme with a congestion control mechanism at the same time. In LWR, intermediate nodes drop any request packet when they are overloaded. Another difference is that LWR concentrates on the route discovery phase to prevent any unnecessary broadcasting of requests, while DLAR does this in the route reply phase. LWR decreases the overhead and improves the routing performance.

2-6 Congestion Adaptive Routing Protocol.

The Congestion adaptive Routing Protocol (CRP) [30] is an adaptive routing protocol that tries to avoid congestion rather than dealing with it reactively. The main idea in CRP is that each node in any route should notify its previous node when it is about to be congested. To prevent congestion, CRP introduces a secondary route called the bypass route. CRP uses the bypass route to bypass the congestion area to the first non-congested node on the primary route. The traffic is split over these two routes. CRP has a significant overhead when there is a bypass route for each primary one. Another disadvantage of CRP is that there is a small loss rate because of dividing the traffic into two routes.

2-7 Congestion Aware Routing Protocol.

The Congestion Aware Routing protocol for Mobile ad hoc networks (CARM) [2] is another congestion-aware protocol that introduces a new parameter to measure the congestion level. This parameter is called the Weighted Channel Delay (WCD). WCD is

calculated using two weighted parameters: the total time spent at the MAC layer and the number of buffered packets in the node, as shown in Equation 2-1.

WCD = aQ + bT Equation 2-1

Where is the number of buffered packets, T is the total time spent at the MAC

layer, and *a* and are constants between 0 and 1.

In CARM, the source node broadcasts a RREQ packet. Each intermediate node calculates its WCD, appends it in the request packet, and rebroadcasts the packet. When the destination receives the request, it responds with a reply message that contains the best route by choosing the smallest aggregate value of WCD of all intermediate nodes. CARM improves the adaptability to congestion by using the WCD parameter, which is used for selecting routes with high throughput and low congestion. On the other hand, CARM causes overhead at intermediate nodes.

2-8 Congestion-Aware Routing Protocols for Ad Hoc networks.

Another congestion-aware routing protocol was proposed by Seetan, Ibabneh, and Dala'ah in their paper [25] called Min_Total_CA protocol. In this protocol the congestion is measured using the number of routes that the node participates in. Min_Total_CA selects the route with the least total value of congestion among all available routes between the

source and the destination. Each route has two congestion value: the forward congestion value, and the backward congestion value. The first value is calculated through the route discovery process, and the second value is calculated through the route reply process. When the source does not have a valid route to the destination, it broadcasts a RREO packet to all of its neighbors. Each intermediate node receives a RREQ packet, will reply with a RREP packet if it has a valid route to the destination. Otherwise, it adds its forward congestion value to the RREQ packet. The RREQ packet travels through the network until it reaches to the destination. The destination checks if it has a valid route to the source, if not it replies with a RREP packet. But if there is a valid route, then the destination will send RREP packet only if the received forward congestion value is smaller than that in the currently used route. The RREP travels back to the source, and each node in the reverse path adds its backward congestion value to the backward congestion value in the RREP. When the source receives a RREP packet from the destination, it checks if it's the first RREP, if so it starts using this route. Otherwise, it checks the freshness of the RREP by checking if the new reply has a destination sequence number that larger than that in the route currently in use, if so it starts using the new route. If the new and the current routes have the same freshness, the source checks if the backward congestion value of the received RREP is lower than that in the current route, if so it starts using the new route.

CHAPTER THREE: THE PROPOSED STUDY

3-1 Velocity and Congestion-Aware Routing Protocol

In this section, we present the design of VCAR protocol and illustrate the network model, congestion metrics, and node movement metrics.

3-1-1 Network model.

We consider a MANET that contains mobile nodes with bidirectional wireless links connecting them. All nodes have the same transmission range, initial battery life, processing capacity, mobility pattern, transmission bandwidth, and responsibilities (each node can route packets). Each node has its own movement speed, and movement direction.

3-1-2 Congestion Metrics.

To address the congestion level at each node, we propose to use two metrics: Interface Queue Length (Qlen), and number of Routes (R) that the node participates in. These two metrics can be measured by the node itself so as to measure the congestion level.

• Queue Length (Qlen).

Each node has an interface that is used to communicate with other nodes. Packets are queued in the interface until they have been transmitted. At any given time, there are a number of waiting packets in the queue (Qlen). Lower Qlen value indicates lower congestion level, and vice versa.

• Number of Routes (R).

All nodes can act as routers, so any node could participate in a number of routes. To measure the congestion level at a node, it is important to count how many routes each

node participates in. A lower value of R means lower node congestion level, and vice versa.

VCAR uses either Qlen or R to measure the congestion level at each node. One of our contributions is to evaluate the use of these factors along with the node movement factor (which will be illustrated in the following subsection). For the rest of this thesis we will use the term Congestion Factor (CF) to indicate either Qlen or R.

3-1-3 Node Movement Metric.

In MANET routes, nodes that do not move frequently will provide better performance than other nodes because they reduce the overhead in construction and reconstruction of routes. The routes that are composed of slow nodes are more stable than other routes. Our proposed algorithm attempts to use slow nodes in constructing routes between nodes. We use node Velocity (V) as an indicator of node stability level. A lower value of V indicates higher node stability, and vice versa.

3-1-4 VCAR Design

VCAR reactively discovers routes from source to destination and selects the best route according to the values of CF and V. The main metric for selecting the best route is called the Congestion-Movement Factor (CMF). CMF is calculated as per Equation 3-1.

$$CMF = \alpha * CF + (1 - \alpha) * \frac{V}{V_{max}}$$
 Equation 3-1.

Where, *Vmax* is the maximum velocity of a node.

The value of (α) is between 0 and 1. This value should be tuned to achieve good performance.

There are two approaches to select the best route between the source and destination. The first approach selects the route with the least accumulative CMF value for all nodes in the path. While the second approach selects the route with the least maximum CMF value.

To differentiate between these two approaches, suppose we have the MANET shown in Figure 3-1. Each node is associated with its CMF value.

Figure 3-1: Each Node in a MANET Has its Own CMF Value

Suppose that node 1 needs to send data to node 9 and it has not a valid route to that node. Then it should discover a new route. There are many possible routes from node 1 to node 9. Each one of these possible routes has an accumulative CMF value for all intermediate nodes, and a maximum CMF among all the intermediate nodes, as shown in Table 3-1.

Route	Accumulative CMF	Maximum CMF
1,2,5,8,9	0.8	0.3

Table 3-1: Accumulative and Maximum CMF Values

1,2,5,3,6,9	1.7	0.8
1,2,5,3,4,7,10,9	2.1	0.8
1,3,5,8,9	1.3	0.8
1,3,6,9	1.1	0.8
1,3,4,7,10,9	1.5	0.8
1,4,3,5,8,9	1.8	0.8
1,4,7,10,9	0.7	0.5
1,4,3,6,9	1.6	0.8

If we use the least accumulative CMF approach, then the best route will be 1,4,7,10,9 because it has the least accumulative CMF value which is (0.7). On the other hand, If we use the least maximum CMF approach, then the best route will be 1,2,5,8,9 because it has the least maximum CMF value, which is (0.3).

VCAR consists of three phases: the route discovery phase, the route reply phase, and the route maintenance phase. In the first phase, the sender broadcasts a RREQ packet to discover a route to the designated destination. In the second phase, a Route Reply (RREP) packet is sent to the source to identify the selected route to the destination. Finally, the third one is responsible for sending a Route Error (RERR) packet when a route becomes invalid for any reason. These phases will be illustrated in details later in this section, but before that we will present some important information about routing control packets in the following sub-section.

3-1-4-1 VCAR Control Packets

There are three types of control packets: RREQ, RREP, and RERR. In this subsection, we will presents the main fields of each one.

The RREQ packet contains the following main fields:

- Source Identification (SID): the address of the source node from which the route need to be established.
- Destination Identification (DID): the address of the destination node, to which a packet or more are to be sent.
- Sequence Number (SEQ): a number that uniquely identifies each packet sent from a source. This number is used to detect duplicate RREQ packets.
- CMF: each node that receives a RREQ calculates its CMF as in Equation 3-1, and then updates the CMF field. The CMF field contains either the cumulative CMF values for all the nodes visited by the RREQ or the maximum CMF value among the CMF values of all the nodes visited by the RREQ.
- Number of Hops (HOP): number of hops traversed by the RREQ.
- Time To Live (TTL): represents the maximum number of hops that the RREQ can traverse before its lifetime expires. This value is used to prevent looping of packets. It is decremented by one at each node receiving the RREQ.

The RREP packet contains the following main fields:

- Source Identification (SID): the address of the destination of the RREQ.
- Destination Identification (DID): the address of the source node that initiated the RREQ.
- Sequence Number (SEQ): is a number that is uniquely assigned to a packet. This number is used to detect duplicate RREP packets.
- CMF: contains either the cumulative or the maximum CMF, as explained earlier.
- Number of Hops (HOP): number of hops traversed by the RREQ.

The RERR packet is the same as in AODV protocol [21].

3-1-4-2 Route Discovery Phase.

The route discovery phase is responsible for finding a route between two nodes: source and destination. The following steps describe this phase.

- **<u>1.</u>** If the source node does not have a valid route to the destination, it prepares a RREQ packet and broadcasts it to all neighbor nodes.
- 2. If an intermediate node receives a RREQ packet, then it does one of the following:

<u>2.1</u> If TTL in RREQ is 0 or SEQ in RREQ had been processed previously, the node discards the RREQ.

<u>2.2</u> If the DID in RREQ is equal to the intermediate node's ID (i.e., the intermediate node is the destination node), the node replies with a RREP packet as will be explained in the route reply phase.

<u>2.3</u> If the intermediate node is not the destination node, it does one of the following:

<u>2.3.1</u> if the node has a valid route to the destination, the node replies with a RREP packet as will be explained in the route reply phase.

<u>2.3.2</u> if the node does not have a valid route to the destination, the node takes the following actions:

<u>2.3.2.A</u> It calculates its CMF as expressed in Equation 3-1.

<u>2.3.2.B</u> It updates the value of CMF in the RREQ.

<u>2.3.2.C</u> The node rebroadcasts RREQ to all of its neighbors.

3-1-4-3 Route Reply Phase.

This phase is entered when an intermediate node has a valid route to the destination or the RREQ has arrived to the destination. The following steps describe this phase.

<u>1.</u>The responding node does the following:

<u>1.1</u> It calculates CMF as expressed in equation 3-1.

<u>1.2</u> It calculates the CMF value of the path, either accumulative or the maximum.

<u>1.3</u> If it's the first RREP sent to the source, then go to step 1.5.

 $\underline{1.4}$ Otherwise, the node compares the calculated CMF with the last sent CMF value. If

the current one is larger than the last one, then discard the packet. Else, go to step 1.5.

 $\underline{1.5}$ Node prepares a RREP packet that contains the CMF value.

<u>1.6</u> The node sends its RREP to the node from which it received the RREQ.

<u>2.</u> The RREP message travels back to the source node that initiated the RREQ via all the nodes that previously rebroadcasted the RREQ packet.

3-1-4-4 Route Maintenance Phase.

The Route maintenance phase is responsible for detecting any link failure. Usually, link failure happens due to node movement. This phase is done as in AODV [21].

3-1-4-5 VCAR Versions

As we mentioned in section 3-3-2, we have two congestion metrics: queue length, and number of routes, and there are two approaches to select the best path: the least accumulative CMF value, and the least maximum CMF value. So that VCAR has four versions. Each version uses a congestion metric along with a measurement approach as shown in Table 3-2. We will use the names in the table to distinguish each one of the four protocols.

Version	Congestion metric	Best Path Selection Approach	Protocol Name
1	queue length	least accumulative CMF	VCAR_Q_ACC
2	queue length	least maximum CMF	VCAR_Q_MAX
3	number of routes	least accumulative CMF	VCAR_R_ACC
4	number of routes	least maximum CMF	VCAR_R_MAX

Table 3-2: VCAR Versions

CHAPTER FOUR: THE SIMULATION

Network simulators are used mainly to compare the performance of different routing protocols used in MANETs. NS-2, OPNET, QualNet, and GloMoSim are the most popular simulators used in this field. We used the NS-2 simulator to evaluate the performance of VCAR protocols against AODV. NS-2 is an accurate, event driven, and open source simulator. It contains the implantation of many existing routing protocols such as DSR and AODV [6].

4-1 NS-2 simulator Architecture

NS-2 is an object-oriented simulator, written in the C++ programming language, with an Object oriented extension Tool Command Language (OTCL) interpreter [18]. C++ is used mainly in the implementation of network protocols. While OTCL is used to write the simulation scenarios [6, 18].

The results from any simulation scenario are stored in a text files called trace files. These files contains all the events that take place in the network during the simulation. Another tool, called GAWK, was used to extract the needed information from these trace files.

4-2 Simulation environment

The NS-2 simulator uses a model for each layer [6]. We have used the models shown in Table 4-1.

Layer	Model
Application	CBR
Transport	UDP
Mac Layer	802.11

 Table 4-1: Models Used for Different Layers

The simulation parameters include the physical channel specifications, mobility models, and network traffic. All simulations were performed using NS-2.35 version. Table 4-2 shows the simulation parameters used in the study, this environment is commonly used, and recommended in many studies such as [14, 25].

Parameter	Value
Simulation time	300 seconds
Number of mobile nodes	50 nodes
Simulation area	1200 meters * 1200 meters
Node transmission range	250 meters
Maximum buffer queue	50 packets
Maximum speed of nodes	10 meters/second
Data flow type	CBR
Number of sending sources	5, 10, and 15 sources
Sending rate	1, 2, 4, and 6 packets/second
Routing protocol	AODV, VCAR_Q_ACC, VCAR_Q_MAX,

 Table 4-2: The simulation parameters

	VCAR_R_ACC, and VCAR_R_MAX
Weight factor used in VCAR protocols (α)	0.25, 0.50, and 0.75

The following explains each one of these parameters:

- 1. Simulation time: specifies the total simulation time in seconds. All the simulations lasted for 300 seconds.
- 2. Simulation area: specifies the dimensions of the simulation area. We used simulation area of 1200 meters * 1200 meters.
- Number of nodes: specifies how many nodes were in the simulation area. We ran all the simulations with 50 nodes.
- 4. Mobility model: specifies the style of node mobility. NS-2 supports different mobility styles. The most widely used mobility style is the random-waypoint style. In this type of mobility, a node randomly chooses a destination in the simulation area, and moves toward this destination with a random velocity uniformly chosen between two values, generated as discussed below. When the node reaches its destination, it stays there for a period of time called Pause Time (PT). Then, it selects another destination and moves toward it. In this research we used random-waypoint style with PS values of: 0,100, 200, and 300 seconds. Node velocity is generated uniformly between 0 and 10 meters/second.
- 5. Traffic model: specifies the communication model used for transmitting packets. We used the Constant Bit Rate (CBR) model for sending packets from the source to the destination. Each packet is 512 bytes. In the CBR model a certain number of nodes

called communication sources send packets to other nodes at some rate. In this study, we use 5, 10, and 15 sources, with sending rates of 1, 2, 4, and 6 packets/second.

- 6. Transport layer protocol: specifies the transport protocol used in the simulation. We used UDP to ensure timely delivery of data packets with low network overhead.
- 7. Routing protocol: specifies the routing protocols used in the simulation. We ran the simulations using AODV, and VCAR protocols.

4-3 Experiments Design

For each experiment, we create two files: traffic connection file, and node movement file. In the following two subsections, we illustrate how these two files were created.

4-3-1 Creating Traffic Connection File

The traffic connection file contains a number of CBR traffic connections generated using the command "ns cbrgen.tcl". The general format of this command is as follows [6]:

ns cbrgen.tcl. [-type cbr] [-nn nodes] [-seed seed] [-mc connections] [-rate rate]

Where *type* specifies the traffic type, *nn* specifies the number of nodes in the simulation, *mc* specifies the number of traffic connections, and *rat*e specifies the sending rate (packets/second).

As example, the following command creates 5 CBR traffic connections, each connection sends 1 packet/second.

ns cbrgen.tcl. -type cbr -nn 50 -seed 1 -mc 5 -rate 1

We created twelve traffic connection files to accommodate all the cases in the study. Each file was created using a combination of a number of communication sources and a sending rate as shown in Table 4-3.

File name	Number of communication sources	Sending rate (packets/second)
cbr-mc_5-rate_1	5	1
cbr-mc_5-rate_2	5	2
cbr-mc_5-rate_4	5	4
cbr-mc_5-rate_6	5	6
cbr-mc_10-rate_1	10	1
cbr-mc_10-rate_2	10	2
cbr-mc_10-rate_4	10	4
cbr-mc_10-rate_6	10	6
cbr-mc_15-rate_1	15	1
cbr-mc_15-rate_2	15	2
cbr-mc_15-rate_4	15	4
cbr-mc_15-rate_6	15	6

Table 4-3: The Traffic Connection Files

4-3-2 Creating nodes movement file

The nodes movement file contains the movement of nodes within the simulation area according to the random-waypoint mobility style. This file is generated using the command *"setdest"*. The general format of this command is as follows [6]:

setdest [-n num_of_nodes] [-p pausetime] [-m maxspeed] [-t simtime] [-x maxx] [-y maxy]

Where *n* specifies the number of nodes in the simulation, *p* specifies the pause time, *m* specifies the maximum speed, *t* specifies the simulation time, and *x* and *y* specify the dimension of the simulation area.

As example, the following command creates the node movement file for 50 nodes that move in an area of 500 meters* 500 meters, and follow the random waypoint style with a pause time=0 and a velocity generated randomly between 0 and 10 meters/second. The simulation lasts for 300 seconds.

setdest -n 50 -p 0.0 -m 10.0 -t 300 -x 500 -y 500

Because we have four pause times in the study: 0, 100, 200, and 300 seconds, then we create four corresponding files as shown in Table 4-4.

Movement file	Pause time (seconds)
scen-0	0
scen-100	100
scen-200	200
scen-300	300

Table 4-4: Nodes Movement Files

To cover all the cases, we create forty eight simulation scenarios. Each scenario exports one traffic file and one movement file.

4-4 Performance Comparison Metrics

Gawk tool was used to extract data from the trace files generated by the simulations. The performance analysis uses four metrics: packet delivery ratio, average end-to-end delay, routing overhead, and energy consumption percentage.

4-4-1 Packet Delivery Ratio

The packet delivery ratio is the ratio between the total number of received data packets to the total number of sent data packets [1, 7, 10, 11, 12]. As per equation 4-1.

.... Equation 4-1

4-4-2 Average End-to-End Delay

End-to-end delay is the delay that a packet suffers between the time it leaves the source application to the time it arrives at the destination application. The average end-to-end delay is the average value of such delays suffered by all the data packets received in the network [1, 7, 10, 11, 12]. It is computed as per Equation 4-2.

Average End – to – End Delay =
$$\frac{\sum_{i=1}^{P} (RTi - STi)}{P}$$
..... Equation 4-2

Where, *P* is the total number of data packets received in the network, *RTi* is the time at which packet *Pi* was received, and *STi* is the time at which packet *Pi* was sent.

4-4-3 Routing overhead

Routing overhead is the ratio between the total number of control packets sent to the total number of data packets received [1, 7, 10, 11, 12]. It is computed as per Equation 4-3.

Routing Overhead = $\frac{\text{total number of control packets s \sec{nt.}}}{\text{total number of datapackets received.}}$

uation 4-3

4-4-4 Energy Consumption Percentage

Energy consumption percentage is the ratio of the total energy consumed at all the nodes to the total initial energy of all the nodes. Energy consumption for each node is defined as the difference between its initial energy and the remaining energy at the end of the simulation. It is computed as per Equation 4-4.

Energy Consumption Percantage =
$$\frac{\sum_{i=1}^{N} (IE - REi)}{N * IE} * 100\%$$
Equa

tion 4-4

Where *N* is the number of nodes in the network, *IE* is the initial energy of the node which is the same for all nodes, and *REi* is the remaining energy at node *i*.

CHAPTER FIVE: RESULTS AND DISCUSSION

In this chapter, we present and analyze the results obtained from the simulation scenarios and evaluate the performance of VCAR against other protocols. We ran the simulations using three values of (α): 0.25, 0.50, and 0.75. Empirically, we have found that α =0.50 gives the best overall results. The following sections present and discuss the results obtained from the simulation scenarios when α =0.50. To see the results when α =0.25, and α =0.75, please refer to appendix A, and appendix B, respectively. Each experiment was ran ten times, and the average value of these runs was considered.

We evaluate the performance of VCAR against a previous congestion-aware routing protocol called Min_Total_CA that was proposed by Seetan, Ababaneh, and Dalal'ah in [25]. We used the simulation environment that illustrated previously in section 4-2, and considered the average value for all the simulation scenarios. The results show that VCAR has achieved a better packet delivery ratio than Min_Total_CA. It has improved the packet delivery ratio by 6.50 percent. VCAR also outperforms Min_Total_CA by 6.00 percent in terms of average end-to-end delay. The results show that VCAR has a lower energy consumption than Min_Total_CA, with an improvement of 8.25 percent. The results also show that the routing overhead values for both VCAR and Min_Total_CA are fairly close to each other.

In the following sections we discuss the results of the simulations and evaluate VCAR performance against AODV performance.

5-1 Packet Delivery Ratio

Figures 5-1 \sim 5-12 show the packet delivery ratio for different transmission rate values and a different number of sources. The results show that all VCAR protocols outperform AODV in terms of packet delivery ratio for all mobility levels, all number of sources, and all transmission rates because they select less congested and more stable routes among all available routes, which reduces the number of dropped packets.

We noticed that all VCAR protocols outperform AODV more substantially when mobility is high and the load is heavy. On the other hand, they outperform AODV less when the mobility is low and the load is light. As example, when the number of sources is fifteen and each source sends six packets per second, VCAR_R_ACC outperforms AODV by 26.99 percent. On the other hand, when the number of sources is five and each source sends one packet per second, VCAR_R_ACC outperforms AODV by 13.94 percent.

The VCAR_R_ACC and VCAR_R_MAX protocols always have a better packet delivery ratio than VCAR_Q_ACC and VCAR_Q_MAX. The reason is that the last two versions (VCAR_Q_ACC and VCAR_Q_MAX) use buffer length to measure the congestion level at the intermediate nodes, and because the buffers at intermediate nodes are almost full (especially when the traffic is heavy) then these two protocols could not select the least congested route accurately.

The VCAR_R_ACC protocol always outperforms all other VCAR protocols in all the cases we have studied. On average, VCAR_R_ACC outperforms AODV by 15.63 percent for low mobility networks, and by 21.63 percent for high mobility networks.

Figure 5-1 shows the packet delivery ratio for all protocols when the number of sources is five and each source sends one packet per second. The figure shows that all VCAR protocols outperform AODV for all pause times. When the pause time is equal to zero (high mobility network), VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX outperform AODV by 13.94, 9.27, 4.89, and 1.84 percent, respectively. When pause time is equal to 300 seconds (low mobility network), VCAR_R_ACC, VCAR_R_MAX, VCAR_R_ACC, VCAR_R_MAX, VCAR_R_ACC, VCAR_R_MAX, VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX outperform AODV by 4.6, 4.44, 2.95, and .61 percent, respectively.

Figure 5-1: Packet Delivery Ratio of 5 sources each one sends 1 packet/s

Figure 5-2 shows the packet delivery ratio for all protocols when the number of sources is five and each source sends two packets per second. The figure shows that all VCAR protocols outperform AODV for all pause times. When the pause time is equal to zero (high mobility network), VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX outperform AODV by 15.14, 10.43, 5.99, and 2.91 percent, respectively. When the pause time is equal to 300 seconds (low mobility network), VCAR_R_ACC,

VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX outperform AODV by 10.67, 8.33, 6.78, and 4.35 percent, respectively.

Figure 5-2: Packet Delivery Ratio of 5 sources each one sends 2 packets/s

Figure 5-3 shows the packet delivery ratio for all protocols when the number of sources is five and each source sends four packets per second. The figure shows that all VCAR protocols outperform AODV for all pause times. When the pause time is equal to zero (high mobility network), VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX outperform AODV by 15.32, 10.60, 6.16, and 3.07 percent, respectively. When the pause time is equal to 300 seconds (low mobility network), VCAR_R_ACC, VCAR_R_MAX, VCAR_R_ACC, VCAR_R_MAX, VCAR_R_ACC, VCAR_R_MAX, VCAR_R_ACC, 4.93, and 2.54 percent, respectively.

Figure 5-3: Packet Delivery Ratio of 5 sources each one sends 4 packets/s

Figure 5-4 shows the packet delivery ratio for all protocols when the number of sources is five and each source sends six packets per second. The figure shows that all VCAR protocols outperform AODV for all pause times. When the pause time is equal to zero (high mobility network), VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX outperform AODV by 14.80, 10.19, 5.77, and 2.69 percent, respectively. When the pause time is equal to 300 seconds (low mobility network), VCAR_R_ACC, VCAR_R_MAX, VCAR_R_ACC, VCAR_R_MAX, VCAR_R_ACC, VCAR_R_MAX, VCAR_R_ACC, 8.47, 6.92, and 4.49 percent, respectively.

Figure 5-4: Packet Delivery Ratio of 5 sources each one sends 6 packets/s

Figure 5-5 shows the packet delivery ratio for all protocols when the number of sources is ten and each source sends one packet per second. The figure shows that all VCAR protocols outperform AODV for all pause times. When the pause time is equal to zero (high mobility network), VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX outperform AODV by 14.73, 10.03, 5.62, and 2.54 percent, respectively. When the pause time is equal to 300 seconds (low mobility network), VCAR_R_ACC, VCAR_R_MAX, VCAR_R_ACC, VCAR_R_MAX, VCAR_R_ACC, 3.74, and 1.37 percent, respectively.

Figure 5-5: Packet Delivery Ratio of 10 sources each one sends 1 packet/s

Figure 5-6 shows the packet delivery ratio for all protocols when the number of sources is ten and each source sends two packets per second. The figure shows that all VCAR protocols outperform AODV for all pause times. When the pause time is equal to zero (high mobility network), VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX outperform AODV by 22.43, 17.42, 12.71, and 4.29 percent, respectively. When the pause time is equal to 300 seconds (low mobility network), VCAR_R_ACC, VCAR_R_MAX, VCAR_R_ACC, VCAR_R_MAX, VCAR_R_ACC, VCAR_R_MAX, VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX outperform AODV by 10.24, 9.30, 7.74, and 5.28 percent, respectively.

Figure 5-6: Packet Delivery Ratio of 10 sources each one sends 2 packets/s

Figure 5-7 shows the packet delivery ratio for all protocols when the number of sources is ten and each source sends four packets per second. The figure shows that all VCAR protocols outperform AODV for all pause times. When the pause time is equal to zero (high mobility network), VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX outperform AODV by 28.26, 19.41, 14.66. and 3.19 percent, respectively. When the pause time is equal to 300 seconds (low mobility network), VCAR_R_ACC, VCAR_R_MAX, VCAR_R_ACC, VCAR_R_MAX, VCAR_R_ACC, VCAR_R_MAX, VCAR_R_ACC, 18.69, 15.79, and 11.12 percent, respectively.

Figure 5-7: Packet Delivery Ratio of 10 sources each one sends 4 packets/s

Figure 5-8 shows the packet delivery ratio for all protocols when the number of sources is ten and each source sends six packets per second. The figure shows that all VCAR protocols outperform AODV for all pause times. When the pause time is equal to zero (high mobility network), VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX outperform AODV by 31.35, 21.04, 20.03, and 5.46 percent, respectively. When the pause time is equal to 300 seconds (low mobility network), VCAR_R_ACC, VCAR_R_MAX, VCAR_R_ACC, VCAR_R_MAX, VCAR_R_ACC, VCAR_R_MAX, VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX outperform AODV by 26.69, 19.68, 16.39, and 11.11 percent, respectively.

Figure 5-8: Packet Delivery Ratio of 10 sources each one sends 6 packets/s

Figure 5-9 shows the packet delivery ratio for all protocols when the number of sources is fifteen and each source sends one packet per second. The figure shows that all VCAR protocols outperform AODV for all pause times. When the pause time is equal to zero (high mobility network), VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX outperform AODV by 22.36, 17.35, 12.64, and 4.23 percent, respectively. When the pause time is equal to 300 seconds (low mobility network), VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX outperform AODV by 18.84, 15.47, 14.72, and 10.67 percent, respectively.

Figure 5-9: Packet Delivery Ratio of 15 sources each one sends 1 packet/s

Figure 5-10 shows the packet delivery ratio for all protocols when the number of sources is fifteen and each source sends two packets per second. The figure shows that all VCAR protocols outperform AODV for all pause times. When the pause time is equal to zero (high mobility network), VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_MAX, and VCAR_Q_ACC outperform AODV by 33.71, 18.95, 18.29, and 2.80 percent, respectively. When the pause time is equal to 300 seconds (low mobility network), VCAR_R_ACC, VCAR_R_MAX, VCAR_R_ACC, VCAR_R_MAX, VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX outperform AODV by 26.57, 18.43, 15.54, and 10.87 percent, respectively.

Figure 5-10: Packet Delivery Ratio of 15 sources each one sends 2 packets/s

Figure 5-11 shows the packet delivery ratio for all protocols when the number of sources is fifteen and each source sends four packets per second. The figure shows that all VCAR protocols outperform AODV for all pause times. When the pause time is equal to zero (high mobility network), VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX outperform AODV by 30.90, 20.68, 19.73, and 5.25 percent, respectively. When the pause time is equal to 300 seconds (low mobility network), VCAR_R_ACC, VCAR_R_MAX, VCAR_R_ACC, VCAR_R_MAX, VCAR_R_ACC, VCAR_R_MAX, VCAR_R_ACC, VCAR_R_MAX, VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX outperform AODV by 26.72, 19.64, 16.35, and 11.07 percent, respectively.

Figure 5-11: Packet Delivery Ratio of 15 sources each one sends 4 packets/s

Figure 5-12 shows the packet delivery ratio for all protocols when the number of sources is fifteen and each source sends six packets per second. The figure shows that all VCAR protocols outperform AODV for all pause times. When the pause time is equal to zero (high mobility network), VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX outperform AODV by 27.00, 21.34, 18.24, and 6.80 percent, respectively. When the pause time is equal to 300 seconds (low mobility network), VCAR_R_ACC, VCAR_R_MAX, VCAR_R_ACC, VCAR_R_MAX, VCAR_R_ACC, VCAR_R_MAX, VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX outperform AODV by 25.73, 19.79, 16.12, and 10.27 percent, respectively.

Figure 5-12: Packet Delivery Ratio of 15 sources each one sends 6 packets/s

5-2 Average End-to-End Delay.

Figures 5-13~5-24 show the average end-to-end delay for different transmission rate values and a different number of sources. The results also show that all VCAR protocols have a lower average end to end delay than the AODV protocol for all mobility levels, all number of sources, and all transmission rates. This is because AODV always uses the shortest route even if it is highly congested. While VCAR protocols use less congested routes. Another reason is that VCAR protocols use the most stable route, while AODV does not, so that the route selected by AODV is more likely to break than the route selected by VCAR protocols.

VCAR_R_ACC outperforms all other VCAR protocols in all the cases we have studied. On average, VCAR_R_ACC outperforms AODV by 28.86 percent for low mobility networks, and by 32.77 for high mobility networks.

Figure 5-13 shows the average end-to-end delay for all protocols when the number of sources is five and each source sends one packet per second. The figure shows that all VCAR protocols outperform AODV for all pause times. When the pause time is equal to zero (high mobility network), VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX outperform AODV by 32.25, 26.97, 18.11, and 11.03 percent, respectively. When the pause time is equal to 300 seconds (low mobility network), VCAR_R_ACC, VCAR_Q_MAX outperform AODV by 31.04, 26.85, 26.34, and 21.55 percent, respectively.

Figure 5-13: Average End to End Delay of 5 sources each one sends 1 packet/s

Figure 5-14 shows the average end-to-end delay for all protocols when the number of sources is five and each source sends two packets per second. The figure shows that all VCAR protocols outperform AODV for all pause times. When the pause time is equal to zero (high mobility network), VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX outperform AODV by 28.87, 23.31, 14.01, and 6.59 percent, respectively. When the pause time is equal to 300 seconds (low mobility network), VCAR_R_ACC,

VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX outperform AODV by 29.93, 25.67, 25.15, and 20.29 percent, respectively.

Figure 5-14: Average End to End Delay of 5 sources each one sends 2 packets/s

Figure 5-15 shows the average end-to-end delay for all protocols when the number of sources is five and each source sends four packets per second. The figure shows that all VCAR protocols outperform AODV for all pause times. When the pause time is equal to zero (high mobility network), VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX outperform AODV by 28.36, 22.77, 13.40, and 5.93 percent, respectively. When the pause time is equal to 300 seconds (low mobility network), VCAR_R_ACC, VCAR_R_MAX, VCAR_R_ACC, VCAR_R_MAX, VCAR_R_ACC, VCAR_R_MAX, VCAR_R_ACC, 300 seconds (low mobility network), VCAR_R_ACC, VCAR_R_MAX, VCAR_R_ACC, VCAR_R_MAX, VCAR_R_ACC, VCAR_R_MAX, VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX outperform AODV by 27.78, 23.39, 22.86, and 17.84 percent, respectively.

Figure 5-15: Average End to End Delay of 5 sources each one sends 4 packets/s

Figure 5-16 shows the average end-to-end delay for all protocols when the number of sources is five and each source sends six packets per second. The figure shows that all VCAR protocols outperform AODV for all pause times. When the pause time is equal to zero (high mobility network), VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX outperform AODV by 27.80, 22.17, 12.73, and 5.20 percent, respectively. When the pause time is equal to 300 seconds (low mobility network), VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX outperform AODV by 27.14, 22.71, 22.18, and 17.11 percent, respectively.

Figure 5-16: Average End to End Delay of 5 sources each one sends 6 packets/s

Figure 5-17 shows the average end-to-end delay for all protocols when the number of sources is ten and each source sends one packet per second. The figure shows that all VCAR protocols outperform AODV for all pause times. When the pause time is equal to zero (high mobility network), VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX outperform AODV by 30.84, 25.44, 16.40, and 9.18 percent, respectively. When the pause time is equal to 300 seconds (low mobility network), VCAR_R_ACC, VCAR_R_MAX, VCAR_R_ACC, VCAR_R_MAX, VCAR_R_ACC, VCAR_R_MAX, VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX outperform AODV by 33.91, 29.90, 29.41, and 24.82 percent, respectively.

Figure 5-17: Average End to End Delay of 10 sources each one sends 1 packet/s

Figure 5-18 shows the average end-to-end delay for all protocols when the number of sources is ten and each source sends two packets per second. The figure shows that all VCAR protocols outperform AODV for all pause times. When the pause time is equal to zero (high mobility network), VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX outperform AODV by 26.52, 20.78, 11.17, and 3.51 percent, respectively. When the pause time is equal to 300 seconds (low mobility network), VCAR_R_ACC, VCAR_R_MAX, VCAR_R_ACC, VCAR_R_MAX, VCAR_R_ACC, 18.21, 17.64, and 12.29 percent, respectively.

Figure 5-18: Average End to End Delay of 10 sources each one sends 2 packets/s

Figure 5-19 shows the average end-to-end delay for all protocols when the number of sources is ten and each source sends four packets per second. The figure shows that all VCAR protocols outperform AODV for all pause times. When the pause time is equal to zero (high mobility network), VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX outperform AODV by 27.10, 23.45, 15.27, and 6.76 percent, respectively. When the pause time is equal to 300 seconds (low mobility network), VCAR_R_ACC, VCAR_R_MAX, VCAR_R_ACC, VCAR_R_MAX, VCAR_R_ACC, VCAR_R_MAX, VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX outperform AODV by 28.51, 22.60, 20.33, and 14.22 percent, respectively.

Figure 5-19: Average End to End Delay of 10 sources each one sends 4 packets/s

Figure 5-20 shows the average end-to-end delay for all protocols when the number of sources is ten and each source sends six packets per second. The figure shows that all VCAR protocols outperform AODV for all pause times. When the pause time is equal to zero (high mobility network), VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX outperform AODV by 35.03, 32.79, 25.73, and 16.30 percent, respectively. When the pause time is equal to 300 seconds (low mobility network), VCAR_R_ACC, VCAR_R_ACC, and VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_MAX outperform AODV by 33.29, 25.88, 21.55, and 14.12 percent, respectively.

Figure 5-20: Average End to End Delay of 10 sources each one sends 6 packets/s

Figure 5-21 shows the average end-to-end delay for all protocols when the number of sources is fifteen and each source sends one packet per second. The figure shows that all VCAR protocols outperform AODV for all pause times. When the pause time is equal to zero (high mobility network), VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX outperform AODV by 34.37, 29.25, 20.66, and 13.81 percent, respectively. When the pause time is equal to 300 seconds (low mobility network), VCAR_R_ACC, VCAR_R_ACC, and VCAR_R_ACC, VCAR_R_MAX, outperform AODV by 23.43, 18.77, 18.21, and 12.89 percent, respectively.

Figure 5-21: Average End to End Delay of 15 sources each one sends 1 packet/s

Figure 5-22 shows the average end-to-end delay for all protocols when the number of sources is fifteen and each source sends two packets per second. The figure shows that all VCAR protocols outperform AODV for all pause times. When the pause time is equal to zero (high mobility network), VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX outperform AODV by 32.97, 29.61, 22.09, and 14.26 percent, respectively. When the pause time is equal to 300 seconds (low mobility network), VCAR_R_ACC, VCAR_R_ACC, and VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_MAX outperform AODV by 27.69, 21.41, 19.41, and 13.23 percent, respectively.

Figure 5-22: Average End to End Delay of 15 sources each one sends 2 packets/s

Figure 5-23 shows the average end-to-end delay for all protocols when the number of sources is fifteen and each source sends four packets per second. The figure shows that all VCAR protocols outperform AODV for all pause times. When the pause time is equal to zero (high mobility network), VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX outperform AODV by 34.14, 30.53, 24.08, and 15.38 percent, respectively. When the pause time is equal to 300 seconds (low mobility network), VCAR_R_ACC, VCAR_Q_MAX outperform AODV by 31.77, 24.62, 20.67, 13.64 percent, respectively.

Figure 5-23: Average End to End Delay of 15 sources each one sends 4 packets/s

Figure 5-24 shows the average end-to-end delay for all protocols when the number of sources is fifteen and each source sends six packets per second. The figure shows that all VCAR protocols outperform AODV for all pause times. When the pause time is equal to zero (high mobility network), VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX outperform AODV by 36.32, 32.33, 27.00, and 17.57 percent, respectively. When the pause time is equal to 300 seconds (low mobility network), VCAR_R_ACC, VCAR_R_ACC, and VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_MAX outperform AODV by 28.24, 23.68, 19.80, and 13.91 percent, respectively.

Figure 5-24: Average End to End Delay of 15 sources each one sends 6 packets/s

5-3 Routing Overhead

Figures 5-25~5-36 show the routing overhead for all the simulation scenarios. The results show that all VCAR protocols have a higher routing overhead than AODV especially in high mobility scenarios. In VCAR, the destination may send multiple replies, because it always searches for the best path among all available paths. This behavior increases the number of RREP packets, and consequently increases the routing overhead.

Figure 5-25 shows the routing overhead for all protocols when the number of sources is five and each source sends one packet per second. The figure shows that AODV outperforms all VCAR protocols for all pause times. When the pause time is equal to zero (high mobility network), AODV outperforms VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX by 2.70, 3.64, 6.00, 6.43 percent, respectively. When the pause time is equal to 300 seconds (low mobility network), AODV outperforms

VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX by 4.28, 5.17, 8.60, 11.20 percent, respectively.

Figure 5-25: Routing Overhead of 5 sources each one sends 1 packet/s

Figure 5-26 shows the routing overhead for all protocols when the number of sources is five and each source sends two packets per second. The figure shows that AODV outperforms all VCAR protocols for all pause times. When the pause time is equal to zero (high mobility network), AODV outperforms VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX by 2.89, 3.83, 6.20, and 6.62 percent, respectively. When the pause time is equal to 300 seconds (low mobility network), AODV outperforms VCAR_R_ACC, VCAR_R_MAX, VCAR_R_ACC, VCAR_R_MAX, VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX by 4.38, 5.28, 8.71, and 11.31 percent, respectively.

Figure 5-26: Routing Overhead of 5 sources each one sends 2 packets/s

Figure 5-27 shows the routing overhead for all protocols when the number of sources is five and each source sends four packets per second. The figure shows that AODV outperforms all VCAR protocols for all pause times. When the pause time is equal to zero (high mobility network), AODV outperforms VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX by 3.00, 3.95, 6.31, and 6.74 percent, respectively. When the pause time is equal to 300 seconds (low mobility network), AODV outperforms VCAR_R_ACC, VCAR_R_MAX, VCAR_R_ACC, VCAR_R_MAX, VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_R_MAX, VCAR_Q_ACC, and VCAR_R_MAX by 3.30, 4.18, 7.58, and 10.16 percent, respectively.

Figure 5-27: Routing Overhead of 5 sources each one sends 4 packets/s

Figure 5-28 shows the routing overhead for all protocols when the number of sources is five and each source sends six packets per second. The figure shows that AODV outperforms all VCAR protocols for all pause times. When the pause time is equal to zero (high mobility network), AODV outperforms VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX by 3.12, 4.07, 6.44, and 6.86 percent, respectively. When the pause time is equal to 300 seconds (low mobility network), AODV outperforms VCAR_R_ACC, VCAR_R_MAX, 3.92, 7.32, and 9.89 percent, respectively.

Figure 5-28: Routing Overhead of 5 sources each one sends 6 packets/s

Figure 5-29 shows the routing overhead for all protocols when the number of sources is ten and each source sends one packet per second. The figure shows that AODV outperforms all VCAR protocols for all pause times. When the pause time is equal to zero (high mobility network), AODV outperforms VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX by 11.00, 12.02, 14.28, and 15.03 percent, respectively. When the pause time is equal to 300 seconds (low mobility network), AODV outperforms VCAR_Q_ACC, and VCAR_R_MAX, VCAR_Q_ACC, and VCAR_R_MAX by 3.56, 4.47, 7.88, and 10.46 percent, respectively.

Figure 5-29: Routing Overhead of 10 sources each one sends 1 packet/s

Figure 5-30 shows the routing overhead for all protocols when the number of sources is ten and each source sends two packets per second. The figure shows that AODV outperforms all VCAR protocols for all pause times. When the pause time is equal to zero (high mobility network), AODV outperforms VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX by 13.56, 14.59, 17.21, and 17.67 percent, respectively. When the pause time is equal to 300 seconds (low mobility network), AODV outperforms VCAR_Q_ACC, and VCAR_R_MAX by 1.06, 1.92, 5.27, and 7.81 percent, respectively.

Figure 5-30: Routing Overhead of 10 sources each one sends 2 packets/s

Figure 5-31 shows the routing overhead for all protocols when the number of sources is ten and each source sends four packets per second. The figure shows that AODV outperforms all VCAR protocols for all pause times. When the pause time is equal to zero (high mobility network), AODV outperforms VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX by 1.17, 2.11, 4.47, and 4.90 percent, respectively. When the pause time is equal to 300 seconds (low mobility network), AODV outperforms VCAR_R_ACC, VCAR_R_MAX, VCAR_R_ACC, VCAR_R_MAX, VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_R_MAX, VCAR_Q_ACC, and VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX by 1.97, 3.53, 6.84, and 9.36 percent, respectively.

Figure 5-31: Routing Overhead of 10 sources each one sends 4 packets/s

Figure 5-32 shows the routing overhead for all protocols when the number of sources is ten and each source sends six packets per second. The figure shows that AODV outperforms all VCAR protocols for all pause times. When the pause time is equal to zero (high mobility network), AODV outperforms VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX by 3.87, 6.52, 12.84, and 14.00 percent, respectively. When the pause time is equal to 300 seconds (low mobility network), AODV outperforms VCAR_Q_ACC, and VCAR_R_MAX, VCAR_Q_ACC, and VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX by 1.96, 10.79, 19.92, and 26.92 percent, respectively.

Figure 5-32: Routing Overhead of 10 sources each one sends 6 packets/s

Figure 5-33 shows the routing overhead for all protocols when the number of sources is fifteen and each source sends one packet per second. The figure shows that AODV outperforms all VCAR protocols for all pause times. When the pause time is equal to zero (high mobility network), AODV outperforms VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX by 1.60, 2.53, 4.87, and 5.29 percent, respectively. When the pause time is equal to 300 seconds (low mobility network), AODV outperforms VCAR_R_ACC, VCAR_R_MAX, VCAR_R_ACC, VCAR_R_MAX, VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_R_MAX, VCAR_Q_ACC, and VCAR_R_MAX by 0.35, 1.92, 5.25, and 7.77 percent, respectively.

Figure 5-33: Routing Overhead of 15 sources each one sends 1 packet/s

Figure 5-34 shows the routing overhead for all protocols when the number of sources is fifteen and each source sends two packets per second. The figure shows that AODV outperforms all VCAR protocols for all pause times. When the pause time is equal to zero (high mobility network), AODV outperforms VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX by 1.63, 2.57, 4.94, and 5.37 percent, respectively. When the pause time is equal to 300 seconds (low mobility network), AODV outperforms VCAR_R_ACC, VCAR_R_MAX, VCAR_R_ACC, VCAR_R_MAX, VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX by 0.34, 1.88, 5.14, and 7.62 percent, respectively.

Figure 5-34: Routing Overhead of 15 sources each one sends 2 packets/s

Figure 5-35 shows the routing overhead for all protocols when the number of sources is fifteen and each source sends four packets per second. The figure shows that AODV outperforms all VCAR protocols for all pause times. When the pause time is equal to zero (high mobility network), AODV outperforms VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX by 3.4, 6.05, 12.38, and 13.66 percent, respectively. When the pause time is equal to 300 seconds (low mobility network), AODV outperforms VCAR_R_ACC, VCAR_R_MAX, VCAR_R_ACC, VCAR_R_MAX, VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX by 1.81, 10.63, 19.80, and 26.92 percent, respectively.

Figure 5-35: Routing Overhead of 15 sources each one sends 4 packets/s

Figure 5-36 shows the routing overhead for all protocols when the number of sources is fifteen and each source sends six packets per second. The figure shows that AODV outperforms all VCAR protocols for all pause times. When the pause time is equal to zero (high mobility network), AODV outperforms VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX by 2.16, 4.92, 11.19, and 12.60 percent, respectively. When the pause time is equal to 300 seconds (low mobility network), AODV outperforms VCAR_Q_ACC, and VCAR_R_MAX, VCAR_Q_ACC, and VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX by 4.39, 13.58, 22.99, and 30.48 percent, respectively.

Figure 5-36: Routing Overhead of 15 sources each one sends 6 packets/s

5-4 Energy Consumption Percentage

Figures 5-37~5-48 show the energy percentage consumption for all simulation scenarios. We can see from these figures that all VCAR protocols outperform AODV in terms of power consumption percentage for all mobility levels, all number of sources , and all transmission rates. This is because VCAR maintains the nodes' energy as much as possible by distributing the load among the intermediate nodes. It reduces the probability of the intermediate node to be exhausted, and subsequently reduces the link failures. This mechanism used by VCAR reduces the power consumption needed to do route maintenance.

Figure 5-37 shows the energy consumption percentage for all protocols when the number of sources is five and each source sends one packet per second. The figure shows that all VCAR protocols outperform AODV for all pause times. When the pause time is

equal to zero (high mobility network), VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX outperform AODV by 29.37, 27.24, 21.75, and 19.06 percent, respectively. When the pause time is equal to 300 seconds (low mobility network), VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX outperform AODV by 30.81, 28.33, 24.07, and 18.48 percent, respectively.

Figure 5-37: Energy Consumption Percentage of 5 sources each one sends 1 packet/s

Figure 5-38 shows the energy consumption percentage for all protocols when the number of sources is five and each source sends two packets per second. The figure shows that all VCAR protocols outperform AODV for all pause times. When the pause time is equal to zero (high mobility network), VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX outperform AODV by 27.38, 25.40, 23.66, and 17.77 percent, respectively. When the pause time is equal to 300 seconds (low mobility network), VCAR_R_ACC, VCAR_R_ACC, VCAR_Q_MAX outperform AODV by 28.03, 25.78, 21.90, and 16.82 percent, respectively.

Figure 5-38: Energy Consumption Percentage of 5 sources each one sends 2 packets/s

Figure 5-39 shows the energy consumption percentage for all protocols when the number of sources is five and each source sends four packets per second. The figure shows that all VCAR protocols outperform AODV for all pause times. When the pause time is equal to zero (high mobility network), VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX outperform AODV by 24.55, 22.28, 16.41, and 13.54 percent, respectively. When the pause time is equal to 300 seconds (low mobility network), VCAR_R_ACC, VCAR_R_ACC, VCAR_Q_MAX outperform AODV by 27.97, 25.40, 20.96, and 15.14 percent, respectively.

Figure 5-39: Energy Consumption Percentage of 5 sources each one sends 4 packets/s

Figure 5-40 shows the energy consumption percentage for all protocols when the number of sources is five and each source sends six packets per second. The figure shows that all VCAR protocols outperform AODV for all pause times. When the pause time is equal to zero (high mobility network), VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX outperform AODV by 25.80, 23.56, 15.72, and 14.97 percent, respectively. When the pause time is equal to 300 seconds (low mobility network), VCAR_R_ACC, VCAR_R_ACC, VCAR_Q_MAX outperform AODV by 30.15, 27.64, 21.41, and 17.70 percent, respectively.

Figure 5-40: Energy Consumption Percentage of 5 sources each one sends 6 packets/s

Figure 5-41 shows the energy consumption percentage for all protocols when the number of sources is ten and each source sends one packet per second. The figure shows that all VCAR protocols outperform AODV for all pause times. When the pause time is equal to zero (high mobility network), VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX outperform AODV by 27.56, 25.38, 19.75, and 16.99 percent, respectively. When the pause time is equal to 300 seconds (low mobility network), VCAR_R_ACC, VCAR_R_ACC, VCAR_Q_MAX outperform AODV by 35.25, 32.93, 28.94, and 23.71 percent, respectively.

Figure 5-41: Energy Consumption Percentage of 10 sources each one sends 1 packet/s

Figure 5-42 shows the energy consumption percentage for all protocols when the number of sources is ten and each source sends two packets per second. The figure shows that all VCAR protocols outperform AODV for all pause times. When the pause time is equal to zero (high mobility network), VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX outperform AODV by 24.91, 24.89, 21.50, 21.02 percent, respectively. When the pause time is equal to 300 seconds (low mobility network), VCAR_R_ACC, VCAR_R_ACC, VCAR_Q_MAX outperform AODV by 32.92, 32.53, 30.53, and 27.46 percent, respectively.

Figure 5-42: Energy Consumption Percentage of 10 sources each one sends 2 packets/s

Figure 5-43 shows the energy consumption percentage for all protocols when the number of sources is ten and each source sends four packets per second. The figure shows that all VCAR protocols outperform AODV for all pause times. When the pause time is equal to zero (high mobility network), VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX outperform AODV by 16.80, 14.30, 12.20, and 10.89 percent, respectively. When the pause time is equal to 300 seconds (low mobility network), VCAR_R_ACC, VCAR_R_ACC, VCAR_Q_MAX outperform AODV by 16.80, 14.30, 12.20, and 10.89 percent, respectively. When the pause time is equal to 300 seconds (low mobility network), VCAR_R_ACC, VCAR_R_ACC, VCAR_R_MAX, outperform AODV by 12.18, 7.89, 5.86, and 5.12 percent, respectively.

Figure 5-43: Energy Consumption Percentage of 10 sources each one sends 4 packets/s

Figure 5-44 shows the energy consumption percentage for all protocols when the number of sources is ten and each source sends six packets per second. The figure shows that all VCAR protocols outperform AODV for all pause times. When the pause time is equal to zero (high mobility network), VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX outperform AODV by 16.83, 15.41, 12.38, and 10.49 percent, respectively. When the pause time is equal to 300 seconds (low mobility network), VCAR_R_ACC, VCAR_R_ACC, VCAR_Q_MAX outperform AODV by 20.52, 20.06, 18.63, and 17.13 percent, respectively.

Figure 5-44: Energy Consumption Percentage of 10 sources each one sends 6 packets/s

Figure 5-45 shows the energy consumption percentage for all protocols when the number of sources is fifteen and each source sends one packet per second. The figure shows that all VCAR protocols outperform AODV for all pause times. When the pause time is equal to zero (high mobility network), VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX outperform AODV by 25.16, 21.80, 21.53, and 16.22 percent, respectively. When the pause time is equal to 300 seconds (low mobility network), VCAR_R_ACC, VCAR_R_MAX, VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_R_MAX, VCAR_Q_ACC, and VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX outperform AODV by 20.23, 18.08, 17.19, and 13.29 percent, respectively.

Figure 5-45: Energy Consumption Percentage of 15 sources each one sends 1 packet/s

Figure 5-46 shows the energy consumption percentage for all protocols when the number of sources is fifteen and each source sends two packets per second. The figure shows that all VCAR protocols outperform AODV for all pause times. When the pause time is equal to zero (high mobility network), VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX outperform AODV by 20.98, 18.92, 17.67, and 13.46 percent, respectively. When the pause time is equal to 300 seconds (low mobility network), VCAR_R_ACC, VCAR_R_MAX, VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_R_MAX, VCAR_Q_ACC, and VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX outperform AODV by 20.36, 17.58, 15.62, and 12.98 percent, respectively.

Figure 5-46: Energy Consumption Percentage of 15 sources each one sends 2 packets/s

Figure 5-47 shows the energy consumption percentage for all protocols when the number of sources is fifteen and each source sends four packets per second. The figure shows that all VCAR protocols outperform AODV for all pause times. When the pause time is equal to zero (high mobility network), VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX outperform AODV by 17.19, 14.75, 14.02, and 8.70 percent, respectively. When the pause time is equal to 300 seconds (low mobility network), VCAR_R_ACC, VCAR_R_MAX, VCAR_R_ACC, VCAR_R_MAX, VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX outperform AODV by 20.17, 16.99, 15.50, and 13.94 percent, respectively.

Figure 5-47: Energy Consumption Percentage of 15 sources each one sends 4 packets/s

Figure 5-48 shows the energy consumption percentage for all protocols when the number of sources is fifteen and each source sends six packets per second. The figure shows that all VCAR protocols outperform AODV for all pause times. When the pause time is equal to zero (high mobility network), VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX outperform AODV by 14.94, 13.44, 11.98, and 10.23 percent, respectively. When the pause time is equal to 300 seconds (low mobility network), VCAR_R_ACC, VCAR_R_ACC, VCAR_R_MAX, VCAR_Q_ACC, and VCAR_R_MAX, VCAR_Q_ACC, and VCAR_R_MAX, VCAR_Q_ACC, and VCAR_R_MAX, VCAR_Q_ACC, and VCAR_Q_MAX outperform AODV by 17.30, 13.76, 12.71, and 12.20 percent, respectively.

Figure 5-48: Energy Consumption Percentage of 15 sources each one sends 6 packets/s

CHAPTER SIX: CONCLUSIONS AND FUTURE WORK

6-1 Conclusions

In this study, we have implemented a new routing protocol for MANETs called VCAR, which selects the route according to both the congestion and the velocity of the intermediate nodes in the network.

VCAR was evaluated against AODV by extensive simulation using NS-2 simulation environment. The performance was evaluated using four metrics: packets delivery ratio, average end-to-end delay, routing overhead, and energy consumption percentage.

We have used different scenarios in the simulation. The nodes move according to the random-waypoint model, with pause times 0, 100, 200, 300 in each experiment. CBR traffic was generated using the transmission rate for 1, 2, 4 and 6 packets per second, repeated for 5, 10, and 15 sources.

The results collected from the simulation show that VCAR outperforms AODV by a significant value in terms of packet delivery ratio, because it selects the more stable route available from source to destination.

VCAR also outperforms AODV by a significant value in terms of average end-to-end delay, because it selects the least congested route from source to destination, so that the packets need not to wait too long in the intermediate nodes.

VCAR also outperforms AODV in terms of energy consumption percentage, because it distributes the load among intermediate nodes, and reduces the energy consumed for route maintenance.

In the other hand, the VCAR routing overhead is higher than the AODV routing overhead, this is because destination in VCAR may sends many route replies for the same route request to select the best route.

6-2 Future Work

Future work may include:

- The performance of VCAR may be enhanced by tuning the weight factor (α) dynamically according to the state of the network.
- More studies are needed in the route reply mechanism used in VCAR in order to enhance the routing overhead.

REFERENCES

1. Bouhorma, M., Bentaouit, H. and Boudhir, A., **Performance Comparison of Ad-hoc Routing Protocols AODV and DSR**, IEEE, International Conference on Multimedia Computing and Systems, October 2009, pp. 511-514.

2. Chen, X., Jones, H. M. and Jayalath, A. D. S., **Congestion-Aware Routing Protocol for Mobile Ad Hoc Networks**, Vehicular Technology Conference 2007, pp. 21-25.

3. Dube, R., Rais, C. D., Wang, K.-Y. and Tripathi, S. K., **Signal Stability-Based** Adaptive Routing (SSA) for Ad Hoc Mobile Networks, IEEE Personal Communications Magazine, Vol. 4, No. 1, February 1997, pp. 36–45.

4. Fraser, G., Kevin, C., Jose, S. and Sandra M., Location and Mobility-Aware Routing for Improving Multimedia Streaming Performance in MANETs, Wireless Personal Communications, Vol. 83, No. 4, August 2015, pp. 1653-1672.

5. Gupta, A. and Sharma, S. D., A Survey on Location Based Routing Protocols in Mobile Ad-hoc Networks, International Journal of Computer Science and Information Technologies, Vol. 5, No. 2, 2014, pp. 994-997.

6. http://nile.wpi.edu/NS/overview.html, Access Date: 25/3/2016.

7. Jadeja, N., Patel, R, **"Performance Evaluation of AODV, DSDV and DSR Routing Protocols using NS- 2 Simulator."** International Journal of Engineering Research and Applications (IJERA), Vol. 3, No. 2, pp.1825-1830, Mar. 2013.

8. Jain, S., Kokate, S., Thakur, P. and Takalkar, S., A Study of Congestion Aware Adaptive Routing Protocols in MANET, Computer Engineering and Intelligent Systems, Vol. 3, No. 4, 2012, pp. 64-73.

9. Johnson, D. B. and Maltz, D. A., **Dynamic Source Routing in Ad Hoc Wireless Networks**, In Mobile Computing, Kluwer Academic Publishers, Vol. 353,No. 1, 1996, pp. 153-181.

10. Khamayseh, Y., Obiedat, G. and Bani Yassin, M., **Mobility and Load aware Routing protocol for ad hoc networks**, Journal of King Saud University - Computer and Information Sciences, Vol. 23,No. 2, July 2011, pp. 105–113.

11. Khan R., Vishwakarma A., **Enhancement of MANET Routing Protocol.**, IEEE Conference of IT in Business, Industry and Government (CSIBIG), pp. 1-6, 2014.

12. Kavita, P. and Abhishek, S., A Comprehensive Performance Analysis of Proactive, Reactive and Hybrid MANETs Routing Protocols, IJCSI International Journal of Computer Science Issues, Vol. 8, No 3, November 2011.

13. Ko, Y.-B. and Vaidya, N. H., Location-Aided Routing (LAR) in Mobile Ad Hoc Networks, Wireless Networks Journal, Vol. 6, No. 4, September 2000, pp. 307-321.

14. Lee, S.-J. and Gerla, M., **Dynamic Load-Aware Routing in Ad Hoc Networks**, In Proceeding of the IEEE International Conference of Communication (ICC), Vol. 10, Helinski, Finland, 2001, pp. 3206-3210.

15. Li, X.-Y., **Wireless Ad Hoc and Sensor Networks: Theory and Applications**, Cambridge University Press, 2008.

16. Lochert, C., Scheuermann, B. and Mauve, M., A Survey on Congestion Control for Mobile Ad-Hoc Networks, Wiley Wireless Communications and Mobile Computing, Vol. 7, No. 5, June 2007, pp. 655-676.

17. Murthy, S. and Garcia-Luna-Aceves, J. J., **An Efficient Routing Protocol for Wireless Networks**, ACM Mobile Networks and Applications, Special Issue on Routing in Mobile Communication Networks, Vol. 1, No. 2, October 1996, pp. 183–197.

18. **Object TCL Extensions (OTCL)**. http://bmrc.berkeley.edu/research /cmt/cmtdoc/otcl/, Access Date: 29/1/2016.

19. Park, V. D. and Corson, M. S., **A highly adaptive distributed routing algorithm for mobile wireless networks**, Sixteen annual joint conference of the IEEE computer and communications societies, Vol. 3, April 1997, pp. 1405-1413.

20. Perkins, C. E. and Bhagwat, P., **Highly Dynamic Destination-SequencedDistance-Vector Routing (DSDV) for Mobile Computers**, ACM SIGCOMM Computer Communication Review, Vol. 24, No. 4, October 1994, pp. 234-244.

21. Perkins, C. E. and Royer, E. M., Ad hoc On-Demand Distance Vector (AODV) Routing, In Proceedings of the second IEEE Workshop on Mobile Computing Systems and Applications (WMCSA '99), New Orleans, LA, February 25-26, 1999, pp. 90-100.

22. Rais, K., Ansari, M. N. and Anilkumar, V., Enhancement of Manet Routing Protocol, IEEE, 2014.

23. Royer, E. M. and Barbara, S., **A Review of Current Routing Protocols for Ad Hoc Mobile Wireless Networks**, IEEE Personal Communications, April 1999, pp. 46-55.

24. Saurin, J. and Nikhil, N., A Light-Weight Trust based Mobility Aware Routing Algorithm for Mobile Ad Hoc Networks, International Journal of Computer Applications, Vol. 97, No. 14, July 2014, pp. 26-30.

25. Seetan, R., Ababneh, I. and Dalal'ah, A., **Congestion-Aware Routing Protocols for Ad Hoc Networks**, The 4th International Conference on Information Technology (ICIT 2009), al-Zaytoona University, Amman, Jordan, June 3rd – 5th, 2009.

26. Shrivastava, L., Tomar, G. S. and Bhadauria, S., **A Survey on Congestion Adaptive Routing Protocols for Mobile Ad-Hoc Networks**, International Journal of Computer Theory and Engineering, Vol. 3, No. 2, April 2011, pp. 189-196.

27. Sweety, G., **Zone Routing Protocol (ZRP) in Ad-Hoc Networks**, International Journal of Research in Engineering and Applied Sciences, Vol. 3, No. 3, March 2013, pp. 92-98.

28. Toh, C.-K., Ad Hoc Wireless Networks: Protocols and Systems, Prentice Hall, 2002.

29. Toh, C.-K., Associativity-Based Routing for Ad Hoc Mobile Networks, Wireless Personal Communications Journal, Vol. 4, No. 2, March 1997, pp. 103-139.

30. Tran, D. A. and Raghavendra, H., Congestion Adaptive Routing in Ad Hoc Networks, IEEE Transactions on Parallel and Distributed Systems, Vol. 17, No. 11, November 2006, pp. 1294-1305.

31. Yi, Y., Kwon, T. J. and Gerla, M., A Load aWare Routing (LWR) Based on Local Information, In Proceedings of the 12th IEEE International Symposium on personal, Indoor and mobile Radio Communications, San Diego, CA, Vol. 2, 2001, pp. 65-69.

الملخص

الشبكات المتحركة الخاصة هي شبكات لاسلكية تعمل بدون وجود بنية تحتية وتتكون من مجموعة من العُقد المتحركة التي تحتاج إلى بناء مسارات بين بعضها عند الحاجة إلى إرسال البيانات. تستخدم هذه العُقد خوارزميات التمرير لبناء وصيانة المسارات بين المصدر والهدف. إن معظم خوارزميات التمرير المطورة تختار مسارات التمرير دون أن تأخذ بعين الاعتبار كلاً من الازدحام في العُقد الوسطية وحركة هذه العُقد. بعض خوارزميات التمرير التي تم تطويرها تأخذ بعين الاعتبار الازدحام فقط في اختيار المسارات، مما يؤدي إلى اختيار مسارات غير مستقرة مما يزيد من احتمال حدوث أعطال متكررة في المسارات وبالتالي حدوث فقدان متكرر للرزم المرسلة. في حين تعمل خوارزميات أخرى على اختيار المسارات اعتمادا على سرعة العقد المرسلة. في الله من يؤدي إلى اختيار مسارات منارات وبالتالي حدوث فقدان متكرر الرزم المصدر إلى الهدف.

في هذا البحث تم اقتراح خوارزمية تمرير اعتماداً على السرعة والازدحام في العُقد التي يتكون منها المسار. وتقوم هذه الخوارزمية باختيار المسار الأفضل باستخدام معيارين هما مستوى الازدحام في العُقد الوسطية وسرعة حركة هذه العُقد.

لقياس مستوى الازدحام في العُقد الوسطية تستخدم الخوارزمية المقترحة طريقتين. الطريقة الأولى تتم باستخدام عدد الرزم التي تنتظر في طابور الانتظار في العُقدة والطريقة الثانية تتم باستخدام عدد المسارات التي تمر من خلال العقدة.

تعمل الخوارزمية المقترحة على اختيار المسار الأفضل بأسلوبين. الأسلوب الأول يختار المسار الأفضل بناءاً على القيمة التراكمية لجميع العُقد الوسطية والأسلوب الثاني يختار المسار الأفضل بناءاً على قيمة النهاية العظمى من بين جميع العُقد الوسطية.

تم تنفيذ أربع إصدارات من الخوارزمية المقترحة. الإصدار الأول يعتبر المسار الأفضل هو المسار ذو القيمة التراكمية الأقل من حيث عدد الرزم التي تنتظر في طابور الانتظار وسرعة حركة العُقد الوسطية. الإصدار الثاني يعتبر المسار الأفضل هو المسار ذو القيمة العظمى الأقل من حيث عدد الرزم التي تنتظر في طابور الانتظار وسرعة حركة العُقد الوسطية. الإصدار الثالث يعتبر المسار الأفضل هو المسار ذو القيمة التراكمية الأقل من حيث عدد المسارات التي

86

تمر من خلال العُقد الوسطية وسرعة حركة العُقد الوسطية. أما الإصدار الرابع فيعتبر المسار الأفضل هو المسار ذو القيمة العظمى الأقل من حيث عدد المسارات التي تمر من خلال العُقد الوسطية وسرعة حركة العُقد الوسطية.

تم إجراء محاكاة مكثفة للخوارزميات المقترحة باستخدام محاكي الشبكة (NS2) وتم استخراج نتائج الخوارزميات المقترحة ومقارنتها مع أداء خوارزمية (AODV) وأظهرت نتائج المحاكاة تحسينات ملحوظة بالنسبة لنسبة تسليم الرزم ومعدل زمن التأخير ونسبة استهلاك الطاقة. ولكن النتائج أظهرت أيضا أن أداء الخوارزميات المقترحة كان أسوأ بالنسبة لمعيار كلفة التمرير.

APPENDIX A: RESULTS WHEN α=0.25

Five sources each one	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
sends one	0	86.36	85	92.49	91.25
	100	94.38	93.61	98.13	97.04
packet/second	200	96.2	95.74	99.12	98.23
•	300	97.24	96.03	100	100
Five sources each one	Pause	VCAR Q ACC	VCAR Q MAX	VCAR R ACC	VCAR R MAX
	Time				
sends two	0	89.64	88.73	94.51	93.05
	100	94.5	94.11	97.24	96.84
packets/second	200	95.67	95.21	97.91	98.01
	300	96.99	96.47	100	100
Five sources each one	Pause	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
	Time				
sends four	0	90.33	89.91	91.36	90.91
	100	94.22	93.42	95.84	94.35
packets/second	200	93.19	92.77	97.41	95.84
	300	95.48	95.19	98.13	97.55
		ſ	ſ		
Five sources each one	Pause	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
	Time				
sends six	0	88.72	88.31	89.35	89.01
	100	90.52	89.86	91.14	90.69
packets/second	200	92.39	91.68	94.52	93.41
	300	95.54	95.09	97.77	96.25
	_	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
Ten sources each one	Pause	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
	lime				
sends one	0	89.05	88.74	90.28	89.91
nadiat/second	100	92.11	91.58	93.33	92.76
packet/second	200	94.54	93.83	96.36	95.81
	300	95.51	94.47	97.7	96.59
		1	1		
Ten sources each one	Pause	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
	Time				
sends two	0	89.34	89.05	90.98	90.24
	100	92.87	92.33	93.91	93.25
packets/second	200	94.35	93.87	96.65	95.42
	300	95.48	94.13	97.05	96.48

Table A-1: Packet Delivery Ratio when α=0.25

Ten sources each one	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
sends four	0	90.95	90.27	91.54	91.05
	100	81.84	81.29	82.94	82.15
packets/second	200	93.88	93.62	95.98	95.64
	300	95.62	94.41	97.23	96.87
	•				•
Ten sources each one	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
sends six	0	83.62	83.54	84.16	84.08
	100	67.62	64.84	69.25	68.11
packets/second	200	72.12	71.91	73.84	72.65
	300	89.91	89.17	91.52	90.51
	•			•	·
Fifteen sources each	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
one sends one	0	90.92	90.55	91.55	91.45
	100	94.13	93.98	95.88	95.14
packet/second	200	95.82	95.15	97.16	96.74
	300	98.14	98.04	98.91	98.85
Fifteen sources each	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
one sends two	0	89.49	88.66	91.02	90.54
	100	91.51	90.16	93.67	92.81
packets/second	200	93.34	92.05	95.23	94.11
	300	94.43	94.12	96.91	95.74
Fifteen sources each	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
one sends four	0	78.56	77.22	80.65	79.12
	100	68.12	66.94	70.05	69.51
packets/second	200	74.35	74.05	76.12	75.3
	300	81.95	81.55	82.61	82.05
Fifteen sources each	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
one sends six	0	61.51	61.08	63.02	62.84
	100	50.13	49.85	51.81	50.44
packets/second	200	55.64	54.71	57.14	56.41
	300	64.02	63.77	65.31	64.51

Time Time <th< th=""><th>Five sources each one</th><th>Pause</th><th>VCAR_Q_ACC</th><th>VCAR_Q_MAX</th><th>VCAR_R_ACC</th><th>VCAR_R_MAX</th></th<>	Five sources each one	Pause	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
sends one 0 0.4178 0.4419 0.3244 0.3502 packet/second 100 0.3114 0.3952 0.2418 0.2711 packet/second 200 0.0667 0.0702 0.0502 0.0592 300 0.0228 0.0294 0.0134 0.0203 Five sources each one Pause VCAR_QACC VCAR_QMAX VCAR_R_ACC VCAR_R_MAX sends two 0 0.1728 0.1763 0.1662 0.1705 packets/second 200 0.085 0.0912 0.0642 0.0778 300 0.0239 0.0252 0.0197 0.0215 Five sources each one Pause VCAR_QACC VCAR_QMAX VCAR_R_MAX sends four 0 0.3601 0.3696 0.3455 0.3549 packets/second 200 0.0662 0.0667 0.0512 0.0561 300 0.0274 0.0281 0.0212 0.0281 Five sources each one Pause VCAR_QACC<		Time				
100 0.3114 0.3952 0.2418 0.2711 200 0.0667 0.0702 0.0502 0.0592 300 0.0228 0.0294 0.0134 0.0203 Five sources each one Time Pause Time VCAR_QACC VCAR_QMAX VCAR_R_ACC VCAR_ARAX packets/second 0 0.1728 0.1763 0.1662 0.1705 100 0.1864 0.1926 0.1601 0.1788 packets/second 200 0.085 0.0912 0.0642 0.0778 300 0.0239 0.0252 0.0179 0.0215 Five sources each one Time Pause VCAR_QACC VCAR_QAMX VCAR_R_ACC VCAR_R_MAX 100 0.1744 0.1752 0.1502 0.0561 0.0215 packets/second 200 0.6062 0.0667 0.0512 0.0561 300 0.0274 0.0281 0.0212 0.0229 Five sources each one Pause VCAR_QACC VCAR_QACC <t< td=""><td>sends one</td><td>0</td><td>0.4178</td><td>0.4419</td><td>0.3244</td><td>0.3502</td></t<>	sends one	0	0.4178	0.4419	0.3244	0.3502
packet/second 200 0.0667 0.0702 0.0502 0.0592 300 0.0228 0.0294 0.0134 0.0203 Five sources each one sends two Pause 0 VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX packets/second 0 0.1728 0.1763 0.1662 0.1705 packets/second 200 0.864 0.1926 0.1601 0.1788 packets/second 200 0.865 0.0912 0.6642 0.0778 300 0.0239 0.0252 0.0197 0.0215 Five sources each one sends four Pause VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX sends four 0 0.3601 0.3696 0.3455 0.3549 packets/second 200 0.0602 0.0667 0.0512 0.0621 sends six 0 0.0274 0.0281 0.0212 0.2208 packets/second 200 0.0651 0.06062 0.6662 0.1692 sends six		100	0.3114	0.3952	0.2418	0.2711
300 0.0228 0.0294 0.0134 0.0203 Five sources each one sends two Pause Time VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX sends two 0 0.1728 0.1763 0.1662 0.1705 packets/second 200 0.085 0.0912 0.0642 0.0778 300 0.0239 0.0252 0.0197 0.0215 Five sources each one sends four Pause Time VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX sends four 0 0.3601 0.3696 0.3455 0.3549 100 0.1744 0.1752 0.1502 0.1629 packets/second 200 0.0274 0.0281 0.0212 0.0229 Five sources each one sends six Pause Time VCAR_Q_ACC VCAR_Q_MAX VCAR_R_RACC VCAR_R_MAX 100 0.2448 0.249 0.2194 0.2208 200 0.0639 0.0651 0.0606 0.0624 300 0.0274 0.2305	packet/second	200	0.0667	0.0702	0.0502	0.0592
Five sources each one sends two Pause Time VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX sends two 0 0.1728 0.1763 0.1662 0.1705 packets/second 200 0.085 0.0912 0.0642 0.0778 300 0.0239 0.0252 0.0197 0.0215 Five sources each one sends four Pause VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX 100 0.1744 0.1752 0.1502 0.1629 packets/second 0 0.3601 0.3696 0.3455 0.3549 100 0.1744 0.1752 0.1502 0.1629 packets/second 200 0.0602 0.0667 0.0512 0.0229 Five sources each one Pause VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX sends six 0 0.2025 0.2305 0.1692 0.1837 100 0.2448 0.249 0.2194 0.2208 200 0.0639		300	0.0228	0.0294	0.0134	0.0203
Five sources each one sends two Pause 100 VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX sends two 0 0.1728 0.1763 0.1662 0.1705 packets/second 200 0.085 0.0912 0.0642 0.0778 300 0.0239 0.0252 0.0197 0.0215 Five sources each one sends four Pause Time VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX 200 0.03601 0.3696 0.3455 0.3549 100 0.1744 0.1752 0.1502 0.1629 packets/second 200 0.0602 0.0667 0.0512 0.0229 Five sources each one Time Pause Time VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX sends six 0 0.2025 0.2305 0.1692 0.1837 100 0.2448 0.249 0.2194 0.2208 packets/second 200 0.0639 0.0651 0.0606 0.0624 300				T		
sends two 0 0.1728 0.1763 0.1662 0.1705 packets/second 100 0.1864 0.1926 0.1601 0.1788 200 0.085 0.0912 0.0642 0.0778 300 0.0239 0.0252 0.0197 0.0215 Five sources each one sends four Pause Time VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX packets/second 0 0.3601 0.3696 0.3455 0.3549 100 0.1744 0.1752 0.1502 0.1629 packets/second 200 0.0602 0.0667 0.0512 0.0561 300 0.0274 0.0281 0.0212 0.0229 Five sources each one sends six 0 0.2025 0.2305 0.1692 0.1837 100 0.2448 0.249 0.2194 0.2208 packet/second 0 0.0274 0.0281 0.0211 0.0262 Ten sources each one packet/second Pause 100 0.1779 0.1806 <t< td=""><td>Five sources each one</td><td>Pause Time</td><td>VCAR_Q_ACC</td><td>VCAR_Q_MAX</td><td>VCAR_R_ACC</td><td>VCAR_R_MAX</td></t<>	Five sources each one	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
100 0.1864 0.1926 0.1601 0.1788 200 0.085 0.0912 0.0642 0.0778 300 0.0239 0.0252 0.0197 0.0215 Five sources each one sends four Pause 100 VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX 200 0.3601 0.3696 0.3455 0.3549 100 0.1744 0.1752 0.1502 0.1629 packets/second 200 0.0602 0.0667 0.0512 0.0212 Five sources each one sends six Pause 100 VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX packets/second 0 0.2025 0.2305 0.1692 0.1837 100 0.2448 0.249 0.2194 0.2208 packets/second 200 0.0639 0.0651 0.0606 0.0624 300 0.0274 0.281 0.2114 0.2391 packets/second 0 0.1779 0.1806 0.1662 0.1724	sends two	0	0.1728	0.1763	0.1662	0.1705
packets/second 200 0.085 0.0912 0.0642 0.0778 300 0.0239 0.0252 0.0197 0.0215 Five sources each one sends four Pause Time VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX packets/second 0 0.3601 0.3696 0.3455 0.3549 100 0.1744 0.1752 0.1502 0.1629 packets/second 200 0.0602 0.0667 0.0512 0.0561 300 0.0274 0.0281 0.0212 0.0229 Five sources each one packets/second Pause Time VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX 100 0.2448 0.249 0.2194 0.2208 200 0.0639 0.0651 0.0606 0.0624 300 0.0274 0.0281 0.0211 0.0262 Ten sources each one packet/second Pause Time VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX 100 0.2405 0.2487 0.234		100	0.1864	0.1926	0.1601	0.1788
300 0.0239 0.0252 0.0197 0.0215 Five sources each one sends four Pause 0 VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX packets/second 0 0.3601 0.3696 0.3455 0.3549 packets/second 100 0.1744 0.1752 0.1502 0.1629 packets/second 200 0.0602 0.0667 0.0512 0.0229 Five sources each one sends six Pause Time VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX packets/second 0 0.2025 0.2305 0.1692 0.1837 100 0.2448 0.249 0.2194 0.2208 packets/second 200 0.0639 0.0651 0.0606 0.0624 300 0.0274 0.0281 0.0211 0.0262 Ten sources each one packet/second Pause Time VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX 100 0.2405 0.2487 0.2344 0.2391 0.2301 0.0291	packets/second	200	0.085	0.0912	0.0642	0.0778
Five sources each one sends four Pause Time VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX sends four 0 0.3601 0.3696 0.3455 0.3549 packets/second 200 0.0602 0.0667 0.0512 0.0561 300 0.0274 0.0281 0.0212 0.0229 Five sources each one Pause VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX 100 0.2025 0.2305 0.1692 0.1837 100 0.2448 0.2499 0.2194 0.2208 packets/second 200 0.0639 0.0651 0.0606 0.0624 300 0.0274 0.0281 0.211 0.0262 Ten sources each one Pause VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX packet/second 0 0.1779 0.1806 0.1662 0.1724 100 0.2405 0.2487 0.2344 0.2391 200 0.0602 <td< td=""><td></td><td>300</td><td>0.0239</td><td>0.0252</td><td>0.0197</td><td>0.0215</td></td<>		300	0.0239	0.0252	0.0197	0.0215
Five sources each one sends four Pause 0 VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX sends four 0 0.3601 0.3696 0.3455 0.3549 packets/second 200 0.0602 0.0667 0.0512 0.0229 Five sources each one sends six Pause 0 0.2025 0.2305 0.1692 0.1837 packets/second 0 0.2025 0.2305 0.1692 0.1837 100 0.2448 0.249 0.2194 0.2208 packets/second 200 0.0651 0.0666 0.6624 300 0.0274 0.0281 0.0211 0.0262 packets/second 200 0.0639 0.0651 0.0606 0.6624 300 0.0274 0.0281 0.0211 0.0262 Ten sources each one packet/second Pause Time VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX 200 0.0602 0.0619 0.0584 0.2391 300 0.0306 0.0311 <				1	1	-
sends four 0 0.3601 0.3696 0.3455 0.3549 packets/second 100 0.1744 0.1752 0.1502 0.1629 packets/second 200 0.0602 0.0667 0.0512 0.0229 Five sources each one Pause VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX sends six 0 0.2025 0.2305 0.1692 0.1837 100 0.2448 0.249 0.2114 0.0262 packets/second 200 0.0639 0.0651 0.6066 0.0624 300 0.0274 0.0281 0.0211 0.0262 Ten sources each one Pause VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX sends one 0 0.1779 0.1806 0.1662 0.1724 packet/second 200 0.0602 0.0619 0.0584 0.0591 300 0.3066 0.0311 0.0282 0.0294 Ten sources each one Pause VCAR_Q_ACC	Five sources each one	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
100 0.1744 0.1752 0.1502 0.1629 200 0.0602 0.0667 0.0512 0.0561 300 0.0274 0.0281 0.0212 0.0229 Five sources each one Pause VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX sends six 0 0.2025 0.2305 0.1692 0.1837 100 0.2448 0.249 0.2114 0.2208 packets/second 200 0.0639 0.0651 0.6066 0.0624 300 0.0274 0.0281 0.0211 0.0262 Ten sources each one Pause VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX sends one 0 0.1779 0.1806 0.1662 0.1724 packet/second 200 0.0602 0.0619 0.0584 0.0591 300 0.0306 0.0311 0.0282 0.0294 Ten sources each one Pause VCAR_Q_ACC VCAR_Q_MAX	sends four	0	0.3601	0.3696	0.3455	0.3549
packets/second 200 0.0602 0.0667 0.0512 0.0561 300 0.0274 0.0281 0.0212 0.0229 Five sources each one sends six Pause Time VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX packets/second 0 0.2025 0.2305 0.1692 0.1837 100 0.2448 0.249 0.2194 0.2208 packets/second 200 0.0639 0.0651 0.0606 0.0624 300 0.0274 0.0281 0.0211 0.0262 Ten sources each one Pause Time VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX sends one 0 0.1779 0.1806 0.1662 0.1724 packet/second 200 0.0602 0.0619 0.0584 0.0591 300 0.0306 0.0311 0.0282 0.0294 Ten sources each one Pause Time VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX sends two 0 0.		100	0.1744	0.1752	0.1502	0.1629
300 0.0274 0.0281 0.0212 0.0229 Five sources each one sends six Pause Time VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX ackets/second 0 0.2025 0.2305 0.1692 0.1837 packets/second 200 0.0639 0.0651 0.0606 0.0244 ackets/second 200 0.0274 0.0281 0.0211 0.0262 Ten sources each one Pause Time VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX packet/second 0 0.1779 0.1806 0.1662 0.1724 packet/second 0 0.1779 0.1806 0.0584 0.2391 packet/second 200 0.0602 0.0619 0.0584 0.0591 300 0.306 0.0311 0.0282 0.0294 Ten sources each one Pause Time VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX sends two 0 0.0971 0.0986 0.0914 0.0952	packets/second	200	0.0602	0.0667	0.0512	0.0561
Five sources each one Time Pause Time VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX sends six 0 0.2025 0.2305 0.1692 0.1837 100 0.2448 0.249 0.2194 0.2208 packets/second 200 0.0639 0.0651 0.0606 0.0624 300 0.0274 0.0281 0.0211 0.0262 Ten sources each one Time Pause Time VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX 300 0.1779 0.1806 0.1662 0.1724 100 0.2405 0.2487 0.2344 0.2391 packet/second 200 0.0602 0.0619 0.0584 0.0591 300 0.0306 0.0311 0.0282 0.0294 Ten sources each one Pause VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX sends two 0 0.0971 0.0986 0.0914 0.0952 100 0.2091 0.		300	0.0274	0.0281	0.0212	0.0229
Five sources each one Time Pause Time VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX sends six 0 0.2025 0.2305 0.1692 0.1837 100 0.2448 0.249 0.2194 0.2208 packets/second 200 0.0639 0.0651 0.0606 0.0624 300 0.0274 0.0281 0.0211 0.0262 Ten sources each one Pause VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX jacket/second 0 0.1779 0.1806 0.1662 0.1724 jacket/second 0 0.2405 0.2487 0.2344 0.2391 jacket/second 200 0.0602 0.0619 0.0584 0.0591 jacket/second 9 0.0306 0.0311 0.0282 0.0294 ten sources each one Pause Time VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX jackets/second 0 0.0971 0.0986 0.0914 0.0952 jackets/					•	
sends six 0 0.2025 0.2305 0.1692 0.1837 packets/second 100 0.2448 0.249 0.2194 0.2208 packets/second 200 0.0639 0.0651 0.0606 0.0624 300 0.0274 0.0281 0.0211 0.0262 Ten sources each one Pause VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX sends one 0 0.1779 0.1806 0.1662 0.1724 packet/second 200 0.0602 0.0619 0.0584 0.2391 gacket/second 200 0.0306 0.0311 0.0282 0.0294 Ten sources each one Pause VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX sends two 0 0.0971 0.0986 0.0914 0.0952 packets/second 0 0.2091 0.2112 0.1968 0.2007 200 0.0514 0.0526 0.0488 0.2007 <td>Five sources each one</td> <td>Pause Time</td> <td>VCAR_Q_ACC</td> <td>VCAR_Q_MAX</td> <td>VCAR_R_ACC</td> <td>VCAR_R_MAX</td>	Five sources each one	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
packets/second 100 0.2448 0.249 0.2194 0.2208 200 0.0639 0.0651 0.0606 0.0624 300 0.0274 0.0281 0.0211 0.0262 Ten sources each one Pause VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX Time 0 0.1779 0.1806 0.1662 0.1724 packet/second 0 0.2405 0.2487 0.2344 0.2391 300 0.0306 0.0311 0.0282 0.0294 Ten sources each one packet/second Pause VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_P_A 300 0.0306 0.0311 0.0282 0.0294 Ten sources each one Pause VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX sends two 0 0.0971 0.0986 0.0914 0.0952 packets/second 100 0.2091 0.2112 0.1968 0.0509	sends six	0	0.2025	0.2305	0.1692	0.1837
packets/second 200 0.0639 0.0651 0.0606 0.0624 300 0.0274 0.0281 0.0211 0.0262 Ten sources each one sends one Pause 0 VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX 100 0.1779 0.1806 0.1662 0.1724 100 0.2405 0.2487 0.2344 0.2391 packet/second 200 0.0602 0.0619 0.0584 0.0591 300 0.0306 0.0311 0.0282 0.0294 Ten sources each one Pause Time VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX sends two 0 0.0971 0.0986 0.0914 0.0952 100 0.2091 0.2112 0.1968 0.2007 packets/second 0 0.0514 0.0526 0.0488 0.0509		100	0.2448	0.249	0.2194	0.2208
300 0.0274 0.0281 0.0211 0.0262 Ten sources each one Pause Time VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX sends one 0 0.1779 0.1806 0.1662 0.1724 packet/second 100 0.2405 0.2487 0.2344 0.2391 200 0.0602 0.0619 0.0584 0.0591 300 0.0306 0.0311 0.0282 0.0294	packets/second	200	0.0639	0.0651	0.0606	0.0624
Ten sources each one Pause Time VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX sends one 0 0.1779 0.1806 0.1662 0.1724 packet/second 100 0.2405 0.2487 0.2344 0.2391 jacket/second 200 0.0602 0.0619 0.0584 0.0591 jacket/second 9ause VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX sends two 0 0.0971 0.0986 0.0914 0.0952 packets/second 200 0.0514 0.0526 0.0488 0.2007		300	0.0274	0.0281	0.0211	0.0262
Ten sources each one Pause Time VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX sends one 0 0.1779 0.1806 0.1662 0.1724 packet/second 100 0.2405 0.2487 0.2344 0.2391 packet/second 200 0.0602 0.0619 0.0584 0.0591 300 0.0306 0.0311 0.0282 0.0294 Ten sources each one Pause VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX sends two 0 0.0971 0.0986 0.0914 0.0952 packets/second 200 0.0514 0.0526 0.0488 0.2007					•	
sends one 0 0.1779 0.1806 0.1662 0.1724 packet/second 100 0.2405 0.2487 0.2344 0.2391 200 0.0602 0.0619 0.0584 0.0591 300 0.0306 0.0311 0.0282 0.0294 Ten sources each one Pause VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX sends two 0 0.0971 0.0986 0.0914 0.0952 packets/second 200 0.0514 0.0526 0.0488 0.0509	Ten sources each one	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
100 0.2405 0.2487 0.2344 0.2391 200 0.0602 0.0619 0.0584 0.0591 300 0.0306 0.0311 0.0282 0.0294 Ten sources each one Pause VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX sends two 0 0.0971 0.0986 0.0914 0.0952 packets/second 200 0.0514 0.0526 0.0488 0.0509	sends one	0	0.1779	0.1806	0.1662	0.1724
packet/second 200 0.0602 0.0619 0.0584 0.0591 300 0.0306 0.0311 0.0282 0.0294 Ten sources each one Pause Time VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX sends two 0 0.0971 0.0986 0.0914 0.0952 packets/second 200 0.0514 0.0526 0.0488 0.0509		100	0.2405	0.2487	0.2344	0.2391
300 0.0306 0.0311 0.0282 0.0294 Ten sources each one Pause VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX sends two 0 0.0971 0.0986 0.0914 0.0952 100 0.2091 0.2112 0.1968 0.2007 packets/second 200 0.0514 0.0526 0.0488 0.0509	packet/second	200	0.0602	0.0619	0.0584	0.0591
Ten sources each one Pause Time VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX sends two 0 0.0971 0.0986 0.0914 0.0952 packets/second 200 0.0514 0.0526 0.0488 0.0509		300	0.0306	0.0311	0.0282	0.0294
Ten sources each one Pause Time VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX sends two 0 0.0971 0.0986 0.0914 0.0952 100 0.2091 0.2112 0.1968 0.2007 200 0.0514 0.0526 0.0488 0.0509				•	·	•
sends two 0 0.0971 0.0986 0.0914 0.0952 100 0.2091 0.2112 0.1968 0.2007 200 0.0514 0.0526 0.0488 0.0509	Ten sources each one	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
100 0.2091 0.2112 0.1968 0.2007 200 0.0514 0.0526 0.0488 0.0509	sends two	0	0.0971	0.0986	0.0914	0.0952
packets/second 200 0.0514 0.0526 0.0488 0.0509		100	0.2091	0.2112	0.1968	0.2007
	packets/second	200	0.0514	0.0526	0.0488	0.0509
300 0.0423 0.0435 0.0394 0.041		300	0.0423	0.0435	0.0394	0.041

Table A-2: Average End-to-End Delay when α=0.25

Ten sources each one	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
sends four	0	0.1369	0.1394	0.1305	0.1334
	100	0.3611	0.3678	0.3507	0.3594
packets/second	200	0.0904	0.0913	0.0891	0.0899
	300	0.1368	0.1397	0.1256	0.1311
		·		·	
Ten sources each one	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
sends six	0	0.1994	0.2016	0.1928	0.1957
	100	0.7711	0.7809	0.7501	0.7607
packets/second	200	0.4601	0.4715	0.4109	0.4315
	300	0.2218	0.2307	0.2005	0.2109
Fifteen sources each	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
one sends one	0	0.1102	0.1118	0.1048	0.1094
	100	0.1347	0.1376	0.1314	0.1335
packet/second	200	0.0552	0.0571	0.0512	0.0534
	300	0.0468	0.0491	0.0448	0.0455
Fifteen sources each	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
one sends two	0	0.0922	0.0934	0.0905	0.0912
	100	0.1638	0.1645	0.1611	0.1627
packets/second	200	0.0579	0.0582	0.0554	0.0568
	300	0.0519	0.0526	0.0492	0.0504
Fifteen sources each	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
one sends four	0	0.2335	0.2391	0.2294	0.2314
	100	0.6208	0.6233	0.6159	0.6165
packets/second	200	0.5218	0.5266	0.5088	0.5142
	300	0.4508	0.4552	0.4415	0.4463
	-				
Fifteen sources each	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
one sends six	0	0.4483	0.4491	0.4426	0.4468
	100	1.1308	1.1416	1.1056	1.1125
packets/second	200	1.2271	1.2391	1.2041	1.2151
	300	1.1294	1.1402	1.1042	1.1119

Five sources each one	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
sends one	0	2.95	3.08	2.64	2.77
	100	2.47	2.84	2.35	2.51
packet/second	200	2.42	2.66	2.04	2.29
	300	1.88	2.09	1.67	1.51
Five sources each one	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
sends two	0	1.95	1.99	1.84	1.91
	100	1.61	1.69	1.47	1.55
packets/second	200	1.42	1.46	1.31	1.35
	300	1.34	1.42	1.15	1.27
Five sources each one	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
sends four	0	4.12	4.33	3.42	3.91
	100	2.93	2.98	2.74	2.89
packets/second	200	3.04	3.19	2.56	2.87
	300	2.19	2.25	2.07	2.12
Five sources each one	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
sends six	0	3.56	3.67	3.33	3.41
	100	2.73	2.91	2.51	2.69
packets/second	200	2.09	2.24	1.74	1.9
	300	1.85	1.93	1.41	1.62
Ten sources each one	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
sends one	0	3.81	3.88	3.66	3.71
	100	3.15	3.31	2.97	3.04
packet/second	200	2.5	2.68	2.35	2.41
	300	2.13	2.19	1.91	2.05
		-			
Ten sources each one	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
sends two	0	2.89	2.94	2.77	2.84
	100	2.81	2.97	2.68	2.74
packets/second	200	1.99	2.01	1.94	1.97
	300	1.83	1.94	1.58	1.74
		1.00		1.00	
Ten sources each one	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX

Table A-3: Routing Overhead when α=0.25

sends four	0	2.88	2.93	2.75	2.81	
	100	2.76	2.84	2.54	2.63	
packets/second	200	2.04	2.15	1.91	1.99	
	300	1.84	1.95	1.62	1.77	
Ten sources each one	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX	
sends six	0	2.69	2.74	2.48	2.56	
	100	2.25	2.34	2.04	2.15	
packets/second	200	1.95	2.04	1.7	1.85	
	300	1.58	1.64	1.31	1.49	
Fifteen sources each	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX	
one sends one	0	4.05	4.12	3.82	3.91	
	100	3.71	3.92	3.52	3.64	
packet/second	200	3.27	3.35	3.09	3.16	
	300	3.14	3.21	2.99	3.07	
Fifteen sources each	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX	
one sends two	0	3.05	3.13	2.81	2.92	
	100	2.63	2.66	2.54	2.59	
packets/second	200	2.06	2.14	1.92	1.99	
	300	1.88	1.95	1.52	1.67	
Fifteen sources each	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX	
one sends four	0	2.58	2.64	2.33	2.41	
	100	2.11	2.25	1.85	1.99	
packets/second	200	1.56	1.69	1.35	1.47	
	300	1.62	1.84	1.15	1.24	
Fifteen sources each	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX	
one sends six	0	1.86	1.94	1.55	1.67	
	100	1.57	1.6	1.34	1.42	
packets/second	200	1.36	1.49	1.15	1.24	
	300	1.56	1.62	1.31	1.47	

Five sources each one	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
sends one	0	22.6214	23.0527	22.0112	22.2511
	100	24.5188	25.5611	22.1924	22.145
packet/second	200	20.1025	21.281	19.7225	19.9499
	300	19,9447	20.9049	18,3255	19,1496
		2010117	20.0010	10.0200	1311130
Five sources each one	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
sends two	0	24.5199	25.1096	23.4136	23.9048
	100	27.0051	29.3681	25.441	26.7513
packets/second	200	24.6625	25.2276	23.9354	24.8152
	300	23.4082	24.9157	22.1289	24.2099
		-		•	
Five sources each one	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
sends four	0	44.6914	46.0105	39.7124	41.5823
	100	47.3815	49.9127	42.1189	45.1806
packets/second	200	38.6944	38.107	36.2881	37.4166
	300	35.6488	36.1492	34.1264	34.9005
Five sources each one	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
sends six	0	57.3631	59.0058	53.1684	55.9871
	100	62.6712	64.1823	57.9118	60.0048
packets/second	200	51.3514	51.9803	50.1182	50.9488
	300	49.1825	49.8522	44.9258	47.3522
	-	-		•	
Ten sources each one	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
sends one	0	31.0558	31.9024	28.1425	30.4418
	100	35.1863	36.2088	33.1204	34.0255
packet/second	200	31.3947	32.1558	28.3035	30.9044
	300	29.9076	30.1184	26.4712	29.115
Ten sources each one	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
sends two	0	42.0778	43.1725	39.2114	40.8256
	100	48.1185	49.4618	46.2914	47.5182
packets/second	200	42.0582	42.8273	40.9112	41.5722
	300	36.7582	37,7522	36.312	37,8436
		50.7502	51.1522	30.312	37.0-30
Ten sources each one	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX

Table A-4: Energy Consumption Percentage when α=0.25

sends four	0	61.6184	62.8724	59.2841	60.357
	100	76.4429	76.9831	73.0059	74.5896
packets/second	200	68.0593	69.9211	65.1479	66.6971
	300	60.3641	61.2776	58.0022	59.4682
					• •
Ten sources each one	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
sends six	0	82.5978	83.0478	79.2584	80.3647
	100	84.1814	84.7691	83.4935	83.978
packets/second	200	84.9823	85.306	82.2831	83.9921
	300	73.9498	74.7055	72.1628	72.8671
					•
Fifteen sources each	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
one sends one	0	35.7204	36.5478	33.5198	34.2487
	100	38.5611	38.9155	36.8221	37.0489
packet/second	200	38.5697	39.0047	33.4189	37.2941
	300	32.3778	34.8256	30.3051	31.8452
			·		•
Fifteen sources each	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
one sends two	0	51.9544	52.0047	50.1584	51.3641
	100	57.3814	58.6284	55.8513	56.1482
packets/second	200	52.5825	53.3716	50.8521	51.4497
	300	50.6721	51.0852	48.3252	49.0026
Fifteen sources each	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
one sends four	0	82.2792	83.1047	80.4459	81.367
	100	83.6472	84.4426	81.5712	82.9147
packets/second	200	82.9258	83.5528	80.2591	81.0159
	300	76.508	77.1184	74.6462	75.4738
					•
Fifteen sources each	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
one sends six	0	89.0059	89.1578	88.0157	88.6347
	100	88.9528	89.4426	87.9501	88.1056
packets/second	200	86.9561	87.2914	85.9411	86.047
	300	81.1834	81.7623	80.0451	80.6834

APPENDIX B: RESULTS WHEN α =0.75

Five sources each one	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
sends one	0	90 32	89 98	92 25	91 በጸ
	100	97.02	96.81	98.13	97.52
packet/second	200	98.05	97.91	99.25	98.92
Pag	300	100	100	100	100
	500	100	100	100	100
Five sources each one	Dauco				
	Time				
sends two	0	92.15	91.95	94.25	93.64
	100	96.95	96.66	97.85	97.05
packets/second	200	98.06	97.82	99.61	98.82
	300	100	100	100	100
Five sources each one	Pause	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
	Time				
sends four	0	93.25	92.94	95.82	95.12
	100	97.52	96.91	98.85	98.63
packets/second	200	98.15	97.56	98.99	98.62
	300	100	100	100	100
	ſ	1	1		
Five sources each one	Pause	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
	Time				
sends six	0	94.13	93.68	95.44	94.95
· · · · · · · · · · · · · · · · · · ·	100	95.84	95.11	96.91	96.06
packets/second	200	97.82	97.75	98.95	98.15
	300	100	100	100	100
-	D				
len sources each one	Pause	VCAR_Q_ACC	VCAR_Q_IVIAX	VCAR_R_ACC	VCAR_R_IVIAX
conde ono	Time	00.04	00.44	04.0F	0.4.0F
senus one	100	93.81	93.11	94.95	94.05
nacket/second	100	96.11	95.96	97.62	96.98
packeysecond	200	97.51	97.32	98.85	98.05
	300	100	100	100	100
	Γ	1	1		
Ten sources each one	Pause	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
	Time				
sends two	0	93.12	92.84	94.63	93.91
	100	95.85	95.11	97.41	96.92
packets/second	200	98.95	98.81	99.95	99.12
	300	100	100	100	100

Table B-1: Packet Delivery Ratio when α=0.75

Ten sources each one	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
sends four	0	93.54	92.98	96.24	94.12
	100	85.36	84.81	87.2	86.15
packets/second	200	97.81	97.42	98.56	98.05
	300	99.21	99.09	99.56	99.44
				•	·
Ten sources each one	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
sends six	0	89.54	88.09	91.62	90.15
	100	73.88	72.91	75.92	74.25
packets/second	200	75.55	74.98	77.63	76.53
	300	94.06	93.53	96.42	95.15
					·
Fifteen sources each	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
one sends one	0	94.14	93.62	97.41	96.62
	100	97.42	96.98	98.04	97.62
packet/second	200	98.75	98.65	99.52	99.11
	300	100	100	100	100
Fifteen sources each	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
one sends two	0	94.51	94.66	96.47	95.74
	100	95.99	95.71	97.88	96.95
packets/second	200	98.42	98.05	98.95	98.66
	300	100	100	100	100
Fifteen sources each	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
one sends four	0	84.35	83.33	86.35	84.62
	100	73.15	72.14	75.82	74.09
packets/second	200	81.26	80.22	82.19	81.85
	300	84.16	83.55	87.15	85.84
	-	_		_	-
Fifteen sources each	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
one sends six	0	67.15	66.6	70.26	68.25
	100	55.09	54.27	57.41	56.33
packets/second	200	61.72	60.79	63.19	62.94
	300	68.52	67.53	70.14	69.52

Five sources each one Pause Time VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_ACX sends one 0 0.3101 0.3209 0.3012 0.3094 packet/second 100 0.2391 0.2451 0.2214 0.2359 packet/second 200 0.0523 0.0542 0.0499 0.0511 300 0.014 0.0142 0.0133 0.0138 Five sources each one Pause Time 0 0.1423 0.1475 0.1341 0.1391 100 0.1392 0.1412 0.1306 0.1371 200 0.0522 0.0541 0.0491 0.0509 300 0.0146 0.015 0.0133 0.0142 0.1330 0.0142 Five sources each one Pause VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX sends four 0 0.2911 0.3056 0.2715 0.2803 packets/second 200 0.0352 0.0364 0.0322 0.0334						
Time Time O </td <td>Five sources each one</td> <td>Pause</td> <td>VCAR_Q_ACC</td> <td>VCAR_Q_MAX</td> <td>VCAR_R_ACC</td> <td>VCAR_R_MAX</td>	Five sources each one	Pause	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
sends one 0 0.3101 0.3209 0.3012 0.3094 packet/second 100 0.2391 0.2451 0.2214 0.2359 packet/second 200 0.0523 0.0542 0.0499 0.0511 300 0.014 0.0142 0.0133 0.0138 Five sources each one Pause VCAR_Q_ACC VCAR_Q_MAX VCAR_R_MAX sends two 0 0.1423 0.1475 0.1341 0.1391 packets/second 200 0.0522 0.0541 0.0491 0.0509 300 0.0146 0.015 0.0133 0.0142 Five sources each one Time Time		Time				
100 0.2391 0.2451 0.2214 0.2359 200 0.0523 0.0542 0.0499 0.0511 300 0.014 0.0142 0.0133 0.0138 Five sources each one sends two Pause 0 0.1423 0.1475 0.1341 0.1391 100 0.1392 0.1412 0.1306 0.1371 packets/second 200 0.0522 0.0541 0.0491 0.0509 300 0.0146 0.015 0.0133 0.0142 Five sources each one sends four Pause Time VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX Five sources each one packets/second Pause Time VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX Five sources each one packets/second Pause Time VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX Five sources each one sends six 0 0.1405 0.1423 0.1322 0.1362 100 0.2011 0.2025 0.1925 0.1995 0.0512 0.0524 <tr< td=""><td>sends one</td><td>0</td><td>0.3101</td><td>0.3209</td><td>0.3012</td><td>0.3094</td></tr<>	sends one	0	0.3101	0.3209	0.3012	0.3094
packet/second 200 0.0523 0.0542 0.0499 0.0511 300 0.014 0.0142 0.0133 0.0133 Five sources each one sends two Pause Time VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX jackets/second 0 0.1423 0.1475 0.1341 0.1391 jackets/second 100 0.1392 0.1412 0.1306 0.1371 jackets/second 200 0.0522 0.0541 0.0491 0.0509 jackets/second 200 0.2911 0.3056 0.2715 0.2803 jackets/second 0 0.2911 0.3056 0.02215 0.2803 jackets/second 200 0.0352 0.0364 0.0322 0.0334 jackets/second 200 0.0149 0.0153 0.0145 0.1452 Five sources each one saids six 0 0.1405 0.1423 0.1322 0.1362 jackets/second 200 0.0556 0.0551 0.0512 0.0524		100	0.2391	0.2451	0.2214	0.2359
300 0.014 0.0142 0.0133 0.0138 Five sources each one sends two Pause 100 VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX ackets/second 0 0.1423 0.1475 0.1341 0.1391 packets/second 100 0.1392 0.1412 0.1306 0.1371 packets/second 200 0.0522 0.0541 0.0491 0.0509 300 0.0146 0.015 0.0133 0.0142 0.0322 Five sources each one packets/second Pause Time VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX sends four 0 0.2911 0.3056 0.2715 0.2803 1000 0.0915 0.0923 0.0808 0.0866 2000 0.0352 0.0364 0.0322 0.0334 300 0.0149 0.0153 0.0145 0.1425 Five sources each one sends six 0 0.1405 0.1423 0.1322 0.1362 100 0.2107 0.2116 </td <td>packet/second</td> <td>200</td> <td>0.0523</td> <td>0.0542</td> <td>0.0499</td> <td>0.0511</td>	packet/second	200	0.0523	0.0542	0.0499	0.0511
Five sources each one sends two Pause Time VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX sends two 0 0.1423 0.1475 0.1341 0.1391 packets/second 200 0.0522 0.0541 0.0491 0.0509 300 0.0146 0.015 0.0133 0.0142 Five sources each one sends four Pause 0 0.2911 0.3056 0.2715 0.2803 packets/second 200 0.0552 0.0364 0.0322 0.0334 gackets/second 0 0.2911 0.3056 0.2715 0.2803 packets/second 200 0.0352 0.0364 0.0322 0.0334 goo 0.0149 0.0153 0.0134 0.0145 Five sources each one packets/second Pause Time VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX sends six 0 0.1405 0.1423 0.1322 0.1362 100 0.2011 0.2025 0.1925 0.1995 200		300	0.014	0.0142	0.0133	0.0138
Five sources each one sends two Pause Time VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX sends two 0 0.1423 0.1475 0.1341 0.1391 packets/second 100 0.1392 0.0541 0.0491 0.0509 300 0.0146 0.015 0.0142 0.0142 Five sources each one Pause VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX sends four 0 0.2911 0.3056 0.2715 0.2803 packets/second 200 0.0352 0.0364 0.0322 0.0334 300 0.0149 0.0153 0.0134 0.0145 Five sources each one Pause VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX sends six 0 0.1405 0.1423 0.1322 0.1362 sends one Time 100 0.2011 0.2025 0.1925 0.1995 packet/second 0 0.1472 0.151 0.0151				-	1	1
sends two 0 0.1423 0.1475 0.1341 0.1391 packets/second 100 0.1392 0.1412 0.1306 0.1371 packets/second 200 0.0522 0.0541 0.0491 0.0509 300 0.0146 0.015 0.0133 0.0142 Five sources each one sends four Pause VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX packets/second 0 0.2911 0.3056 0.2715 0.2803 100 0.0915 0.0923 0.0808 0.0866 packets/second 200 0.0352 0.0364 0.0322 0.0334 300 0.0149 0.0153 0.0145 0.145 Five sources each one Pause VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX sends six 0 0.1405 0.1423 0.1322 0.1362 100 0.2011 0.2025 0.1925 0.1995 packet/second 0 0.1472 0.151	Five sources each one	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
100 0.1392 0.1412 0.1306 0.1371 200 0.0522 0.0541 0.0491 0.0509 300 0.0146 0.015 0.0133 0.0142 Five sources each one sends four Pause Time VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX 200 0.0915 0.0923 0.0808 0.0866 200 0.0352 0.0364 0.0322 0.0334 300 0.0149 0.0153 0.0134 0.0145 Five sources each one packets/second Pause Time VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX Five sources each one packets/second Pause Time VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX 900 0.1405 0.1423 0.1322 0.1362 100 0.2011 0.2025 0.1995 0.0151 900 0.0536 0.0551 0.0512 0.0524 300 0.01472 0.151 0.1391 0.1421 100 0.2107 </td <td>sends two</td> <td>0</td> <td>0.1423</td> <td>0.1475</td> <td>0.1341</td> <td>0.1391</td>	sends two	0	0.1423	0.1475	0.1341	0.1391
packets/second 200 0.0522 0.0541 0.0491 0.0509 300 0.0146 0.015 0.0133 0.0142 Five sources each one sends four Pause Time VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX packets/second 0 0.2911 0.3056 0.2715 0.2803 packets/second 100 0.0915 0.0923 0.0808 0.0866 200 0.0352 0.0364 0.0322 0.0334 300 0.0149 0.0153 0.0134 0.0145 Five sources each one packets/second Pause Time VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX sends six 0 0.1405 0.1423 0.1322 0.1362 100 0.2011 0.2025 0.1925 0.1995 200 0.0536 0.0551 0.0512 0.0524 300 0.0155 0.0159 0.0149 0.151 Ten sources each one packet/second Pause Time VCAR_Q_ACC VCAR_Q_MAX		100	0.1392	0.1412	0.1306	0.1371
300 0.0146 0.015 0.0133 0.0142 Five sources each one sends four Pause 0 VCAR_Q_ACC 0 VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX packets/second 0 0.2911 0.3056 0.2715 0.2803 packets/second 200 0.0352 0.0364 0.0322 0.0334 300 0.0149 0.0153 0.0134 0.0145 Five sources each one Time Pause Time VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX sends six 0 0.1405 0.1423 0.1322 0.1362 100 0.2011 0.2025 0.1925 0.1995 200 0.0536 0.0551 0.0512 0.0524 300 0.0155 0.0159 0.0149 0.0151 Ten sources each one packet/second Pause Time VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX 100 0.2107 0.2116 0.2022 0.2094 200 0.0523 0.0544 0.0492 <td>packets/second</td> <td>200</td> <td>0.0522</td> <td>0.0541</td> <td>0.0491</td> <td>0.0509</td>	packets/second	200	0.0522	0.0541	0.0491	0.0509
Five sources each one sends four Pause Time VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX 3ends four 0 0.2911 0.3056 0.2715 0.2803 packets/second 200 0.0352 0.0364 0.0322 0.0334 300 0.0149 0.0153 0.0134 0.0145 Five sources each one sends six 0 0.1405 0.1423 0.1322 0.1362 100 0.2011 0.2025 0.1925 0.1995 0.0524 200 0.0536 0.0551 0.0512 0.0524 300 0.0155 0.0159 0.0149 0.0149 packets/second 0 0.1472 0.151 0.1391 0.1421 100 0.2107 0.2116 0.2022 0.2094 packet/second 0 0.1472 0.151 0.1391 0.1421 100 0.2107 0.2116 0.2022 0.2094 packet/second 0 0.0239 0.0245 0.0221 <t< td=""><td></td><td>300</td><td>0.0146</td><td>0.015</td><td>0.0133</td><td>0.0142</td></t<>		300	0.0146	0.015	0.0133	0.0142
Five sources each one sends four Pause Time VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX sends four 0 0.2911 0.3056 0.2715 0.2803 packets/second 200 0.0352 0.0364 0.0322 0.0334 300 0.0149 0.0153 0.0134 0.0145 Five sources each one sends six Pause Time VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX sends six 0 0.1405 0.1423 0.1322 0.1362 100 0.2011 0.2025 0.1925 0.1995 packets/second 200 0.0536 0.0551 0.0512 0.0524 300 0.0155 0.0159 0.0149 0.0151 Ten sources each one packets/second Pause Time VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX 100 0.2107 0.2116 0.2022 0.2094 packet/second 0 0.1472 0.151 0.1391 0.1421 100 0.2107				•		
sends four 0 0.2911 0.3056 0.2715 0.2803 packets/second 100 0.0915 0.0923 0.0808 0.0866 200 0.0352 0.0364 0.0322 0.0334 300 0.0149 0.0153 0.0134 0.0145 Five sources each one Pause VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX rime 0 0.1405 0.1423 0.1322 0.1362 packets/second 0 0.1405 0.1423 0.1322 0.1362 100 0.2011 0.2025 0.1925 0.1995 200 0.0536 0.0551 0.0512 0.0524 300 0.0155 0.0159 0.0149 0.0151 reme rime 0 0.1472 0.151 0.1391 0.1421 packet/second 0 0.2107 0.2116 0.2022 0.2094 packet/second 0 0.0239 0.0245 0.0221 0.0	Five sources each one	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
100 0.0915 0.0923 0.0808 0.0866 200 0.0352 0.0364 0.0322 0.0334 300 0.0149 0.0153 0.0134 0.0145 Five sources each one sends six Pause Time VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX packets/second 0 0.1405 0.1423 0.1322 0.1362 packets/second 100 0.2011 0.2025 0.1925 0.1995 200 0.0536 0.0551 0.0512 0.0524 300 0.0155 0.0159 0.0149 0.0151 Ten sources each one packet/second Pause Time VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX sends one 0 0.1472 0.151 0.1391 0.1421 100 0.2107 0.2116 0.2022 0.2094 200 0.0523 0.0544 0.0492 0.0509 300 0.0239 0.0245 0.0221 0.0235 <t< td=""><td>sends four</td><td>0</td><td>0.2911</td><td>0.3056</td><td>0.2715</td><td>0.2803</td></t<>	sends four	0	0.2911	0.3056	0.2715	0.2803
packets/second 200 0.0352 0.0364 0.0322 0.0334 300 0.0149 0.0153 0.0134 0.0145 Five sources each one sends six Pause 100 VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX packets/second 0 0.1405 0.1423 0.1322 0.1362 packets/second 100 0.2011 0.2025 0.1925 0.1995 200 0.0536 0.0551 0.0512 0.0524 300 0.0155 0.0159 0.0149 0.0151 Ten sources each one packet/second Pause 0 VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX Time 100 0.2107 0.2116 0.2022 0.2094 packet/second 0 0.0523 0.0544 0.0492 0.0509 300 0.0239 0.0245 0.0221 0.0235 Ten sources each one packet/second Pause 100 0.0795 0.0806 0.0766 0.0782 100 0.1823		100	0.0915	0.0923	0.0808	0.0866
300 0.0149 0.0153 0.0134 0.0145 Five sources each one sends six Pause Time VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX packets/second 0 0.1405 0.1423 0.1322 0.1362 packets/second 100 0.2011 0.2025 0.1925 0.1995 200 0.0536 0.0551 0.0512 0.0524 300 0.0155 0.0159 0.0149 0.0151 Ten sources each one Pause Time VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX packet/second 0 0.1472 0.151 0.1391 0.1421 100 0.2107 0.2116 0.2022 0.2094 packet/second 0 0.0523 0.0544 0.0492 0.0509 300 0.0239 0.0245 0.0221 0.0235 Ten sources each one Pause Time VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX Sends two 0	packets/second	200	0.0352	0.0364	0.0322	0.0334
Five sources each one sends six Pause Time VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX sends six 0 0.1405 0.1423 0.1322 0.1362 packets/second 200 0.0536 0.0551 0.0512 0.0524 300 0.0155 0.0159 0.0149 0.0151 Ten sources each one packet/second Pause Time VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX 100 0.2107 0.151 0.1391 0.1421 100 0.2107 0.2116 0.2022 0.2094 packet/second 200 0.0523 0.0544 0.0492 0.0509 300 0.0239 0.0245 0.0221 0.0235 0.0235 Ten sources each one Pause Time VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX Sends two 0 0.0239 0.0245 0.0221 0.0235 packets/second 0 0.0392 0.0429 0.0392 0.0411		300	0.0149	0.0153	0.0134	0.0145
Five sources each one sends six Pause Time VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX sends six 0 0.1405 0.1423 0.1322 0.1362 packets/second 200 0.0536 0.0551 0.0512 0.0524 300 0.0155 0.0159 0.0149 0.0151 Ten sources each one Pause VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX sends one 0 0.1472 0.151 0.1391 0.1421 100 0.2107 0.2116 0.2022 0.2094 packet/second 200 0.0523 0.0544 0.0492 0.0509 300 0.0239 0.245 0.0221 0.0235 Ten sources each one Pause VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX sends two 0 0.0795 0.0806 0.0766 0.0782 packets/second 0 0.1823 0.1882 0.1711 0.1762			·	·		•
sends six 0 0.1405 0.1423 0.1322 0.1362 packets/second 100 0.2011 0.2025 0.1925 0.1995 200 0.0536 0.0551 0.0512 0.0524 300 0.0155 0.0159 0.0149 0.0151 Ten sources each one Pause VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX Time 100 0.1472 0.151 0.1391 0.1421 packet/second 0 0.1472 0.151 0.1391 0.1421 packet/second 0 0.2107 0.2116 0.2022 0.2094 packet/second 200 0.0523 0.0544 0.0492 0.0509 300 0.0239 0.0245 0.0221 0.0235 rime	Five sources each one	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
jackets/second 100 0.2011 0.2025 0.1925 0.1995 200 0.0536 0.0551 0.0512 0.0524 300 0.0155 0.0159 0.0149 0.0151 Ten sources each one Pause VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX Time 0 0.1472 0.151 0.1391 0.1421 packet/second 0 0.2107 0.2116 0.2022 0.2094 200 0.0523 0.0544 0.0492 0.0509 300 0.0239 0.0245 0.0221 0.0235 Ten sources each one Pause VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX Ten sources each one Pause VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX sends two 0 0.0795 0.0806 0.0766 0.0782 packets/second 100 0.1823 0.1882 0.1711 0.1762 200 0.0425 0.042	sends six	0	0.1405	0.1423	0.1322	0.1362
packets/second 200 0.0536 0.0551 0.0512 0.0524 300 0.0155 0.0159 0.0149 0.0151 Ten sources each one Pause Time VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX sends one 0 0.1472 0.151 0.1391 0.1421 100 0.2107 0.2116 0.2022 0.2094 packet/second 200 0.0523 0.0544 0.0492 0.0235 Ten sources each one Pause Ten sources each one VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX sends two 0 0.0239 0.0245 0.0221 0.0235 packets/second 0 0.0795 0.0806 0.0766 0.0782 packets/second 0 0.1823 0.1882 0.1711 0.1762 200 0.0425 0.0429 0.0392 0.0411		100	0.2011	0.2025	0.1925	0.1995
300 0.0155 0.0159 0.0149 0.0151 Ten sources each one sends one Pause Time VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX packet/second 0 0.1472 0.151 0.1391 0.1421 100 0.2107 0.2116 0.2022 0.2094 200 0.0523 0.0544 0.0492 0.0509 300 0.0239 0.0245 0.0221 0.0235	packets/second	200	0.0536	0.0551	0.0512	0.0524
Ten sources each one sends one Pause Time VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX becket/second 0 0.1472 0.151 0.1391 0.1421 100 0.2107 0.2116 0.2022 0.2094 200 0.0523 0.0544 0.0492 0.0509 300 0.0239 0.0245 0.0221 0.0235 Ten sources each one Pause Time VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX sends two 0 0.0795 0.0806 0.0766 0.0782 100 0.1823 0.1882 0.1711 0.1762 200 0.0425 0.0429 0.0392 0.0411		300	0.0155	0.0159	0.0149	0.0151
Ten sources each one Pause Time VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX sends one 0 0.1472 0.151 0.1391 0.1421 packet/second 100 0.2107 0.2116 0.2022 0.2094 packet/second 200 0.0523 0.0544 0.0492 0.0509 300 0.0239 0.0245 0.0221 0.0235 Ten sources each one Pause VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX sends two 0 0.0795 0.0806 0.0766 0.0782 packets/second 100 0.1823 0.1882 0.1711 0.1762 200 0.0425 0.0429 0.0392 0.0411				•		
sends one 0 0.1472 0.151 0.1391 0.1421 packet/second 100 0.2107 0.2116 0.2022 0.2094 200 0.0523 0.0544 0.0492 0.0509 300 0.0239 0.0245 0.0221 0.0235 Ten sources each one Pause VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX sends two 0 0.0795 0.0806 0.0766 0.0782 packets/second 200 0.0425 0.0429 0.0392 0.0411	Ten sources each one	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
100 0.2107 0.2116 0.2022 0.2094 200 0.0523 0.0544 0.0492 0.0509 300 0.0239 0.0245 0.0221 0.0235 Ten sources each one Pause VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX sends two 0 0.0795 0.0806 0.0766 0.0782 packets/second 100 0.1823 0.1882 0.1711 0.1762 200 0.0425 0.0429 0.0392 0.0411	sends one	0	0.1472	0.151	0.1391	0.1421
packet/second 200 0.0523 0.0544 0.0492 0.0509 300 0.0239 0.0245 0.0221 0.0235 Ten sources each one Pause VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX sends two 0 0.0795 0.0806 0.0766 0.0782 packets/second 100 0.1823 0.1882 0.1711 0.1762 200 0.0425 0.0429 0.0392 0.0411		100	0.2107	0.2116	0.2022	0.2094
300 0.0239 0.0245 0.0221 0.0235 Ten sources each one Pause Time VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX sends two 0 0.0795 0.0806 0.0766 0.0782 100 0.1823 0.1882 0.1711 0.1762 200 0.0425 0.0429 0.0392 0.0411	packet/second	200	0.0523	0.0544	0.0492	0.0509
Ten sources each one Pause Time VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX sends two 0 0.0795 0.0806 0.0766 0.0782 packets/second 200 0.0425 0.0429 0.0392 0.0411		300	0.0239	0.0245	0.0221	0.0235
Ten sources each one sends two Pause Time VCAR_Q_ACC VCAR_Q_MAX VCAR_R_ACC VCAR_R_MAX sends two 0 0.0795 0.0806 0.0766 0.0782 packets/second 200 0.0425 0.0429 0.0392 0.0411						
sends two 0 0.0795 0.0806 0.0766 0.0782 100 0.1823 0.1882 0.1711 0.1762 200 0.0425 0.0429 0.0392 0.0411 200 0.0245 0.0251 0.0235 0.0235	Ten sources each one	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
100 0.1823 0.1882 0.1711 0.1762 200 0.0425 0.0429 0.0392 0.0411 200 0.0245 0.2351 0.0235 0.0235	sends two	0	0.0795	0.0806	0.0766	0.0782
packets/second 200 0.0425 0.0429 0.0392 0.0411		100	0.1823	0.1882	0.1711	0.1762
	packets/second	200	0.0425	0.0429	0.0392	0.0411
		300	0.0345	0.0351	0.0325	0.0335

Table B-2: Average End-to-End Delay when α=0.75

Ten sources each one	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
sends four	0	0.1205	0.1255	0.1145	0.1192
	100	0.2715	0.2805	0.262	0.2688
packets/second	200	0.0811	0.0852	0.0772	0.0798
	300	0.1342	0.1367	0.1255	0.1312
			·		• •
Ten sources each one	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
sends six	0	0.1719	0.1786	0.1625	0.1675
	100	0.641	0.6558	0.605	0.6229
packets/second	200	0.4493	0.4527	0.4262	0.4381
	300	0.2315	0.2388	0.2155	0.2205
			·		• •
Fifteen sources each	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
one sends one	0	0.0942	0.0962	0.0885	0.0911
	100	0.114	0.118	0.107	0.111
packet/second	200	0.0461	0.0473	0.0435	0.0452
	300	0.0321	0.0341	0.0305	0.0315
		1	1		
Fifteen sources each	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
one sends two	0	0.0761	0.0782	0.0741	0.0752
	100	0.1512	0.1523	0.1442	0.1492
packets/second	200	0.0459	0.0471	0.0431	0.0445
	300	0.0425	0.0443	0.0394	0.0412
Fifteen sources each	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
one sends four	0	0.2113	0.2151	0.2012	0.2071
	100	0.5617	0.572	0.5514	0.5534
packets/second	200	0.4512	0.4579	0.4382	0.4476
	300	0.4052	0.4192	0.3801	0.3941
	1	1	1	1	1
Fifteen sources each	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
one sends six	0	0.4182	0.42005	0.3951	0.4021
	100	0.9971	1.005	0.9541	0.9735
packets/second	200	1.0995	1.1009	1.0251	1.0741
	300	0.9811	0.9905	0.9422	0.9624

Five sources each one	Pause	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
conde ono	Time	2.90	2.00	2.45	2.70
senus one	0	2.80	2.99	2.45	2.79
nackat/second	100	2.16	2.29	1.98	2.05
packet/second	200	2.09	2.15	1.99	2.03
	300	1.69	1.9	1.47	1.56
Five sources each one	Pause	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
	lime				
sends two	0	1.95	1.99	1.85	1.9
	100	1.56	1.6	1.47	1.5
packets/second	200	1.39	1.45	1.27	1.31
	300	1.26	1.3	1.09	1.19
Five sources each one	Pause	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
	Time				
sends four	0	3.37	3.42	3.29	3.31
	100	2.86	2.9	2.71	2.79
packets/second	200	2.7	2.74	2.49	2.61
	300	2.27	2.36	1.99	2.09
				I	
Five sources each one	Pause	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
	Time				
sends six	0	3.36	3.49	3.08	3.19
	100	2.57	2.6	2.39	2.49
packets/second	200	1.79	1.83	1.69	1.72
	300	1.42	1.49	1.32	1.36
Ten sources each one	Pause	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
	Time				
sends one	0	3.8	3.96	3.57	3.69
	100	3.17	3.3	2.99	3.05
packet/second	200	2.48	2.56	2.29	2.39
	300	1.96	2.01	1.79	1.86
Ten sources each one	Pause	VCAR Q ACC	VCAR Q MAX	VCAR R ACC	VCAR R MAX
	Time				
sends two	0	2.79	2.8	2.69	2.75
	100	2.68	2.71	2.56	2.63
packets/second	200	1 96	2.04	1.86	1 91
	300	1.50	1 05	1.6	1.51
	500	1.0	1.03	1.0	1.07

Table B-3: Routing Overhead when α=0.75

100

Ten sources each one	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
sends four	0	2.75	2.79	2.68	2.71
	100	2.59	2.63	2.51	2.56
packets/second	200	1.98	2.02	1.88	1.93
	300	1.7	1.74	1.6	1.64
			1		
Ten sources each one	Pause	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
sends six	0	2 61	2 67	2 37	2 52
	100	2.01	2.37	2.03	2.09
packets/second	200	1 58	1.6	1.46	1 51
	300	1.30	1 41	1 25	1 31
		1.57	1.71	1.25	1.51
Fifteen sources each	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
one sends one	0	3.96	4.02	3.69	3.84
	100	3.59	3.68	3.39	3.51
packet/second	200	3.19	3.31	3.05	3.09
	300	3.02	3.11	2.89	2.94
	•				
Fifteen sources each	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
one sends two	0	2.88	2.91	2.77	2.81
	100	2.58	2.6	2.44	2.53
packets/second	200	1.9	1.95	1.79	1.84
	300	1.49	1.52	1.42	1.47
		·			·
Fifteen sources each	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
one sends four	0	2.37	2.39	2.28	2.31
	100	1.92	1.95	1.81	1.86
packets/second	200	1.39	1.42	1.31	1.37
	300	1.2	1.25	1.09	1.14
					·
Fifteen sources each	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
one sends six	0	1.56	1.65	1.47	1.51
	100	1.34	1.41	1.26	1.29
packets/second	200	1.23	1.26	1.1	1.19
	300	1.2	1.24	1.09	1.16

Five sources each one	Pause	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
sends one	0	20.8423	21.0062	19 2571	20 2051
Series one	100	20.0425	21.6002	19.52/1	20.2051
nacket/second	200	10 0521	10 2012	17 21/15	19 251
puelled second	200	10.0000	19.2012	17.3145	10.231
	300	17.2105	17.7533	16.1682	16.9875
Five sources each one	Pause	VCAR Q ACC	VCAR Q MAX	VCAR R ACC	VCAR R MAX
	Time				
sends two	0	21.1358	21.9251	20.5815	20.9487
	100	22.8257	23.1594	21.9825	22.1056
packets/second	200	20.4253	21.5591	19.1982	19.9823
	300	20.4235	20.9915	18.5249	19.1503
			1	1	
Five sources each one	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
sends four	0	35.0056	36.4891	32.651	34.9213
	100	37.1594	37.9926	35.1258	36.6482
packets/second	200) 33.9158 34.005		30.3054	32.1159
	300	30.3052	31.8251	27.5681	29.0062
		-		1	
Five sources each one	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
sends six	0	42.6381	43.4369	40.1592	41.5921
	100	49.5266	51.5126	46.3105	48.5261
packets/second	200	41.4925	42.5812	38.1256	39.2251
	300	37.8625	39.0062	34.3526	36.5261
			·		
Ten sources each one	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
sends one	0	24.5923	25.7435	22.4512	23.6215
	100	26.6041	26.9005	24.5162	25.9871
packet/second	200	25.2581	26.0059	22.8403	24.5162
	300	23.6591	24.2489	21.5941	22.6931
Ten sources each one	Pause	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
	Time	24.0050	25.4400	24.625	22.4250
conde two			1 35 1189	1 31.672	33.4259
sends two	0	34.0059	55.1105	01.020	
sends two	0 100	34.0059 39.3901	41.5582	37.4982	38.4921
sends two packets/second	0 100 200	34.0059 39.3901 36.2259	41.5582 38.0047	37.4982 33.4925	38.4921 35.4469

Table B-4: Energy Consumption Percentage when α=0.75

Ten sources each one	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
sends four	0	54.2591	55.3698	50.5741	52.3655
	100	67.2515	69.0014	63.0059	65.2689
packets/second	200	59.2681	61.5294	55.2256	57.261
	300	54.2192	54.9821	52.2561	53.3156
	•				·
Ten sources each one	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
sends six	0	73.6259	75.0045	70.4256	72.1519
	100	74.6982	75.4135	72.1956	73.6984
packets/second	200	74.2351	75.2142	71.9852	73.4025
	300	65.2081	66.6288	62.524	64.5291
					• •
Fifteen sources each	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
one sends one	0	31.9158	32.0058	29.1315	31.1584
	100	32.6175	33.4911	30.2193	31.5802
packet/second	200	30.3052	31.9806	28.014	29.3614
	300	28.5611	28.9628	26.2734	27.881
Fifteen sources each	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
one sends two	0	46.2294	47.0058	42.3632	44.9152
	100	49.1058	50.4822	47.5274	48.1266
packets/second	200	43.805	44.1142	41.4109	42.2825
	300	42.0052	44.4809	40.5281	41.8536
Fifteen sources each	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
one sends four	0	73.6822	75.118	70.2595	72.3569
	100	74.9184	76.0051	71.5591	73.3056
packets/second	200	73.8824	76.1542	70.3521	72.1718
	300	71.9522	72.5496	69.1482	71.0082
			1		
Fifteen sources each	Pause Time	VCAR_Q_ACC	VCAR_Q_MAX	VCAR_R_ACC	VCAR_R_MAX
one sends six	0	81.4592	82.5561	78.4159	79.2045
	100	82.5694	83.5529	78.1215	80.806
packets/second	200	78.6173	79.8259	76.6482	77.9205
	300	74.5917	75.2845	72.2458	73.3589

APPENDIX C: 95% CONFIDENCE IINTERVAL OF PACKET

DELIVERY RATION WHEN α=0.50

Table	C-1.	Confidence	Interval	of Packet	Deliverv	Ratio	with	Pause	Time-f)
Table	U-1 .	Confidence	Inter var	UI I acket	Denvery	Natio	WILLI	rause	1 me-u	,

Five sources	Confiden	VCAR_Q_A	VCAR_Q_M	VCAR_R_A	VCAR_R_M	AODV
each one	се					
sends one	Interval					
packet/seco	Min					
		88.157	85.427	96.040	91.616	84.131
nd	Max	89.237	86.800	96.658	93.191	84.990
Five sources	Confiden	VCAR_Q_A CC	VCAR_Q_M AX	VCAR_R_A	VCAR_R_M AX	AODV
each one	ce					
sends two	Interval					
packets/seco	Min	8/ 631	82 010	92 198	87 952	79 92/
nd	Max	04.031	02.010	52.150	07.552	75.524
	IVIGX	85.667	83.328	92.792	89.464	80.741
Five sources	Confiden	VCAR_Q_A CC	VCAR_Q_M AX	VCAR_R_A CC	VCAR_R_M AX	AODV
each one	се					
sends four	Interval					
packets/seco	Min					
		80.399	77.909	87.589	83.554	75.808
nd	Max					
		81.384	79.162	88.152	84.991	76.583
Five sources	Confiden	VCAR_Q_A CC	VCAR_Q_M AX	VCAR_R_A CC	VCAR_R_M AX	AODV
each one	ce					
sends six	Interval					
packets/seco	Min					
		75.977	73.624	82.771	78.958	71.903
nd	Max	76.907	74.807	83.304	80.316	72.638

Ten sources	Confiden	VCAR_Q_A	VCAR_Q_M	VCAR_R_A	VCAR_R_M	AODV
each one	се	CC	AX	CC	AX	
sends one	Interval					
packet/seco	Min	87.284	84.581	95.089	90.709	82.724
nd	Max	88.353	85.941	95.701	92.269	83.570
Ten sources	Confiden	VCAR_Q_A	VCAR_Q_M	VCAR_R_A	VCAR_R_M	AODV
each one	ce					
sends two	Interval					
packets/seco	Min	86.079	79.468	93.776	89.457	76.425
nd	Max	87.133	80.810	94.380	90.995	77.256
Ten sources	Confiden	VCAR_Q_A CC	VCAR_Q_M AX	VCAR_R_A CC	VCAR_R_M AX	AODV
each one	ce					
sends four	Interval					
packets/seco	Min	76.378	68.541	85.713	79.323	66.656
nd	Max	77.362	69.827	86.267	80.785	67.432
Ten sources	Confiden	VCAR_Q_A CC	VCAR_Q_M AX	VCAR_R_A CC	VCAR_R_M AX	AODV
each one	се					
sends six	Interval					
packets/seco	Min	68.929	60.366	75.660	69.296	57.444
nd	Max	69.774	61.499	76.127	70.574	58.112
Fifteen	Confiden	VCAR_Q_A CC	VCAR_Q_M AX	VCAR_R_A CC	VCAR_R_M AX	AODV
sources each	ce					
one sends	Interval					

one	Min					
		85.736	79.152	93.403	89.100	76.166
packets/seco	Max					
na		86 786	80 488	94 004	90 632	76 991
Fifteen	Confiden	VCAR O A	VCAR O M	VCAR R A	VCAR R M	AODV
		CC	AX	CC	AX	
sources each	ce					
one sends	Interval					
	D 4 ¹ -					
two	IVIIN	75 350	65 277	85 111	75 546	63 725
packets/seco	Max	75.550	05.277	05.441	75.540	05.725
, ,	1010AX					
nd						
		76.288	66.502	85.968	76.938	64.467
Fifteen	Confiden	VCAR_Q_A	VCAR_Q_M	VCAR_R_A	VCAR_R_M	AODV
a a ura a a a a b		CC	AX	CC	AX	
sources each	се					
one sends	Interval					
four	Min					
		68.348	59.887	74.948	68.678	57.101
packets/seco	Max					
nd						
nu		69 186	61 011	75 411	69 944	57 766
Fifteen	Confiden	VCAR Q A	VCAR Q M	VCAR R A	VCAR R M	AODV
		CC	AX	CC	AX	
sources each	ce					
one sends six	Interval					
packata/casa	N 4 inc					
	IVIIN	61 025	51 017	65 711	62 121	51 628
nd	Max	01.025	54.542	05.744	02.434	51.020
		61.77	55.973	66.149	63.585	52.229

Table C-2: Confidence Interval of Packet Delivery Ratio with Paus	e Time=300
---	------------

Five sources	Confiden	VCAR_Q_A CC	VCAR_Q_M AX	VCAR_R_A CC	VCAR_R_M AX	AODV
each one	ce					
sends one	Interval					
packet/seco	Min					
		98.001	95.331	99.946	99.859	95.250
nd	Max					
		98.769	96.954	99.966	99.759	95.875
Five sources	Confiden	VCAR_Q_A CC	VCAR_Q_M AX	VCAR_R_A CC	VCAR_R_M AX	AODV
each one	се					
sends two	Interval					
packets/seco	Min					
		94.081	91.518	97.387	95.322	88.160

r	1	T				
nd	Max					
		94.819	93.076	98.393	96.313	88.738
Five sources	Confiden	VCAR_Q_A	VCAR_Q_M	VCAR_R_A	VCAR_R_M	AODV
		CC	AX	CC	AX	
each one	се					
sends four	Interval					
packets/seco	Min					
		89.377	86.942	92.518	90.556	85.244
na	Max					
		90.078	88.422	93.474	91.497	85.777
Five sources	Confiden	VCAR_Q_A	VCAR_Q_M	VCAR_R_A	VCAR_R_M	AODV
		СС	AX	СС	AX	
each one	се					
sends six	Interval					
packet/seco	Min					
		84.461	82.160	87.429	85.576	79.059
nd	Max					
_		85.124	83.559	88.333	86.465	79.544
Ten sources	Confiden	VCAR_Q_A	VCAR_Q_M	VCAR_R_A	VCAR_R_M	AODV
		CC	AX	CC	AX	
each one	се					
sends one	Interval					
packet/seco	Min	04.500	04.007		05.004	00.000
		94.532	91.927	98.794	95.894	90.986
na	Max	05 000	02.456	00 205	00.045	04.054
-		95.892	93.156	99.205	96.645	91.854
Ten sources	Confiden	VCAR_Q_A	VCAR_Q_M	VCAR_R_A	VCAR_R_M	AODV
a a a la la si si			AX		AX	
each one	ce					
	lates of					
senas two	interval					
na akata /aasa	N 41					
packets/seco	iviin	05 222	02.027	07 702	0.0 470	00 444
nd	N 4 -	95.222	92.627	97.702	96.478	88.444
na	Max	05.000	04.004	07.000	07.400	00.04.4
		95.968	94.204	97.926	97.480	89.014

Ten sources	Confiden	VCAR_Q_A	VCAR_Q_M	VCAR_R_A	VCAR_R_M	AODV
each one	ce					
sends four	Interval					
packets/seco	Min	91 3/15	87 256	96 992	93 787	78 926
nd	Max	02.052	09.741	08 120	04 202	70.461
Ten sources	Confiden	VCAR_Q_A	VCAR_Q_M	VCAR_R_A	94.202 VCAR_R_M	AODV
each one	се					
sends six	Interval					
packets/seco	Min	79 /03	75 / 51	86.280	81 783	68 255
nd	Max	80.018	76.735	87.255	82.145	68.718
Fifteen	Confiden	VCAR_Q_A	VCAR_Q_M	VCAR_R_A	VCAR_R_M	AODV
sources each	се					
one sends	Interval					
one	Min	96.077	92,258	99.802	98.584	83,793
packet/seco	Max		521230	55.002	50.501	001/00
nd		96.821	93,829	100.026	99 582	84,361
Fifteen	Confiden	VCAR_Q_A	VCAR_Q_M	VCAR_R_A	VCAR_R_M	AODV
sources each	се					
one sends	Interval					
two	Min	86.995	83.101	95.135	89.320	75.333
packets/seco	Max					
nd		87.668	84.515	96.209	89.716	75.844

www.manaraa.com

Fifteen	Confiden	VCAR_Q_A	VCAR_Q_M	VCAR_R_A	VCAR_R_M	AODV
		СС	AX	CC	AX	
sources each	се					
one sends	Interval					
f						
tour	Min					
		78.771	74.852	85.638	81.134	67.733
packets/seco	Max					
nd						
		79.381	76.126	86.605	81.493	68.192
Fifteen	Confiden	VCAR_Q_A	VCAR_Q_M	VCAR_R_A	VCAR_R_M	AODV
		СС	AX	СС	AX	
sources each	се					
one sends six	Interval					
packets/seco	Min					
, ,		71.325	67.422	77.089	73.698	61.453
nd	Max					
		71.877	68.570	77,959	74.024	61.869

APPENDIX D: 95% CONFIDENCE INTERVEL OF END-TO-END

DELAY WHEN α=0.50

Five sources	Confiden	VCAR_Q_A	VCAR_Q_M	VCAR_R_A	VCAR_R_M	AODV
		СС	AX	СС	AX	
each one	ce					
sends one	Interval					
packet/seco	Min					
		0.0672	0.0733	0.0555	0.0601	0.0817
nd	Max					
		0.0687	0.0744	0.0570	0.0612	0.0843
Five sources	Confiden	VCAR_Q_A	VCAR_Q_M	VCAR_R_A	VCAR_R_M	AODV
		СС	AX	СС	AX	
each one	ce					
sends two	Interval					
packets/seco	Min					
		0.0847	0.0923	0.0699	0.0757	0.0981
nd	Max					
		0.0866	0.0938	0.0718	0.0771	0.1012

Table D-1: Confidence Interval of End-to-End Delay with Pause Time=0

Five sources	Confiden	VCAR_Q_A	VCAR_Q_M	VCAR_R_A	VCAR_R_M	AODV
each one	се		AX		AX	
sends four	Interval					
packets/seco	Min	0.1090	0.1187	0.0899	0.0974	0.1252
nd	Max	0 1114	0 1206	0.0924	0.0991	0 1292
Five sources	Confiden	VCAR_Q_A	VCAR_Q_M	VCAR_R_A	VCAR_R_M	AODV
each one	ce					
sends six	Interval					
packets/seco	Min	0 1402	0 1531	0 1162	0 1253	0 1603
nd	Max	0.1443	0.155	0.1192	0.1284	0.1652
Ten sources	Confiden	VCAR_Q_A	VCAR_Q_M	VCAR_R_A	VCAR_R_M	AODV
each one	ce					
sends one	Interval					
packet/seco	Min	0.1401	0.1527	0.1156	0.1252	0.1668
nd	Max	0.1432	0.1551	0.1188	0.1275	0.1721
Ten sources	Confiden	VCAR_Q_A	VCAR_Q_M	VCAR_R_A	VCAR_R_M	AODV
each one	ce					
sends two	Interval					
packets/seco	Min	0.2919	0.3181	0.2408	0.2608	0.3270
nd	Max	0.2983	0.3231	0.2474	0.2656	0.3374
Ten sources	Confiden	VCAR_Q_A CC	VCAR_Q_M	VCAR_R_A CC	VCAR_R_M	AODV
each one	ce					
sends four	Interval					

packets/seco	Min	0.3699	0.4084	0 3174	0.3348	0.4345
nd	Max	0.3033	0.1001	0.3171	0.5510	0.1313
		0.3781	0.4148	0.3262	0.3410	0.4484
Ten sources	Confiden	VCAR_Q_A CC	VCAR_Q_M AX	VCAR_R_A CC	VCAR_R_M AX	AODV
each one	се					
sends six	Interval					
packets/seco	Min	0 4906	0 5548	0 4281	0 4449	0 6575
nd	Max	0.1500	0.0010	0.1201	0.1115	0.0373
		0.5015	0.5635	0.4399	0.4530	0.6785
Fifteen	Confiden	VCAR_Q_A CC	VCAR_Q_M AX	VCAR_R_A CC	VCAR_R_M AX	AODV
sources each	се					
one sends	Interval					
one	Min					
		0.3317	0.3614	0.2736	0.2964	0.4160
packet/seco	Max					
nd						
		0.3390	0.3671	0.2812	0.3018	0.4293
Fifteen	Confiden	VCAR_Q_A	VCAR_Q_M	VCAR_R_A	VCAR_R_M	AODV
		СС	AX	CC	AX	
sources each	се					
one sends	Interval					
two	Min					
		0.4252	0.4694	0.3648	0.3849	0.5431
packets/seco	Max					
nd		0.4346	0.4768	0.3749	0.3919	0.5605
Fifteen	Confiden	VCAR_Q_A	VCAR_Q_M	VCAR_R_A	VCAR_R_M	AODV
sources each	се					
one sends	Interval					
four	Min	0.5452	0.6096	0.4715	0.4998	0.7147

packets/seco	Max					
nd		0.5572	0.6192	0 4849	0 5090	0.7375
Fifteen	Confiden	VCAR Q A	VCAR Q M	VCAR R A	VCAR R M	AODV
		cc	AX	cc	AX	
sources each	ce					
one sends six	Interval					
packets/seco	Min					
		0.6989	0.7917	0.6081	0.6491	0.9529
nd	Max					
		0.7144	0.8042	0.6249	0.6610	0.9833

Five sources	Confiden	VCAR_Q_A CC	VCAR_Q_M AX	VCAR_R_A CC	VCAR_R_M AX	AODV
each one	се					
sends one	Interval					
packet/seco	Min	0.0183	0.0194	0.0170	0.0180	0.0248
nd	Max	0.0186	0.0198	0.0175	0.0186	0.0252
Five sources	Confiden	VCAR_Q_A	VCAR_Q_M	VCAR_R_A	VCAR_R_M	AODV
each one	се					
sends two	Interval					
packets/seco	Min	0.0319	0.0345	0.0281	0.0318	0.0462
nd	Max	0.0328	0.0354	0.0349	0.0326	0.0470
Five sources	Confiden	VCAR_Q_A CC	VCAR_Q_M AX	VCAR_R_A CC	VCAR_R_M AX	AODV
each one	се					
sends four	Interval					
packets/seco	Min	0.0296	0.0314	0.0276	0.0292	0.0384
nd	Max	0.0301	0.0321	0.0283	0.0301	0.0390
Five sources	Confiden	VCAR_Q_A	VCAR_Q_M	VCAR_R_A	VCAR_R_M	AODV
each one	се					
sends six	Interval					
packets/seco	Min	0.0382	0.041	0.036	0.0382	0.049
nd	Max	0.0394	0.0419	0.0369	0.0398	0.0508

Table D-2: Confidence Interval of End-to-End Delay with Pause Time=300

Ten sources	Confiden	VCAR_Q_A	VCAR_Q_M	VCAR_R_A	VCAR_R_M	AODV
each one	се	CC	AX	CC	AX	
sends one	Interval					
packet/seco	Min	0.0381	0.0404	0.0355	0.0375	0.0539
nd	Max	0.0387	0.0413	0.0364	0.0387	0.0548
Ten sources	Confiden	VCAR_Q_A	VCAR_Q_M AX	VCAR_R_A CC	VCAR_R_M AX	AODV
each one	се					
sends two	Interval					
packets/seco	Min	0 1586	0 1684	0 1479	0 1562	0 1926
nd	Max	0.1611	0.1722	0.1515	0.1614	0.1957
Ten sources	Confiden	VCAR_Q_A CC	VCAR_Q_M AX	VCAR_R_A CC	VCAR_R_M AX	AODV
each one	се					
sends four	Interval					
packets/seco	Min	0.2397	0.2572	0.2142	0.2308	0.3007
nd	Max	0.2434	0.2630	0.2194	0.2385	0.3057
Ten sources	Confiden	VCAR_Q_A	VCAR_Q_M	VCAR_R_A	VCAR_R_M	AODV
each one	се					
sends six	Interval					
packets/seco	Min	0.3298	0.3598	0.2793	0.3089	0.4202
nd	Max	0.3349	0.3679	0.2860	0.3192	0.4271
Fifteen	Confiden	VCAR_Q_A CC	VCAR_Q_M	VCAR_R_A CC	VCAR_R_M	AODV
sources each	ce					
one sends	Interval					

117

OVERHEAD WHEN α=0.50

APPENDIX E: 95% CONFIDENCE INTERVAL OF ROUTING

one	Min					
		0.2049	0.2175	0.1910	0.2017	0.2504
packet/seco	Max					
nd						
		0.2081	0.2223	0.1956	0.2084	0.2545
Fifteen	Confiden	VCAR_Q_A	VCAR_Q_M	VCAR_R_A	VCAR_R_M	AODV
a a ura a a a a b			AX		AX	
sources each	ce					
one sends	Interval					
one senas	meervar					
two	Min					
		0.2755	0.2957	0.2462	0.2653	0.3417
packets/seco	Max					
nd						
		0.2798	0.3023	0.2521	0.2742	0.3474
Fifteen	Confiden	VCAR_Q_A	VCAR_Q_M	VCAR_R_A	VCAR_R_M	AODV
		CC	AX	CC	AX	
sources each	ce					
one sends	Interval					
one senus	IIILEIVai					
four	Min					
		0.3705	0.4020	0.3174	0.3490	0.4669
packets/seco	Max					
-						
nd						
		0.3763	0.4110	0.3250	0.3607	0.4746
Fifteen	Confiden	VCAR_Q_A	VCAR_Q_M	VCAR_R_A	VCAR_R_M	AODV
		CC	AX	CC	AX	
sources each	ce					
ono conde six	Intorval					
one senus six	IIILEIVAI					
packets/seco	Min					
1		0.4983	0.5465	0.4091	0.4591	0.6466
nd	Max					
		0.5061	0.5588	0.4189	0.4744	0.6573

Five sources	Confiden	VCAR_Q_A CC	VCAR_Q_M AX	VCAR_R_A	VCAR_R_M AX	AODV
each one	ce					
sends one	Interval					
packet/seco	Min	1.8496	1.8582	1.7934	1.8015	1.7387
nd	Max	1.8639	1.8700	1.8044	1.8291	1.7644
Five sources	Confiden	VCAR_Q_A CC	VCAR_Q_M AX	VCAR_R_A CC	VCAR_R_M AX	AODV
each one	се					
sends two	Interval					
packets/seco	Min	2.0530	2.0626	1.9907	1.9997	1.9265
nd	Max	2.0689	2.0758	2.0028	2.0303	1.9549
Five sources	Confiden	VCAR_Q_A CC	VCAR_Q_M AX	VCAR_R_A CC	VCAR_R_M AX	AODV
each one	ce					
sends four	Interval					
packet/seco	Min	2.3037	2.3145	2.2338	2.2439	2.1593
nd	Max	2.3216	2.3293	2.2474	2.2783	2.1911
Five sources	Confiden	VCAR_Q_A CC	VCAR_Q_M AX	VCAR_R_A CC	VCAR_R_M AX	AODV
each one	се					
sends six	Interval					
packets/seco	Min	2.6081	2.6202	2.5289	2.5403	2.4417
nd	Max	2.6283	2.6369	2.5443	2.5792	2.4777
Ten sources	Confiden	VCAR_Q_A CC	VCAR_Q_M AX	VCAR_R_A CC	VCAR_R_M AX	AODV
each one	се					
sends one	Interval					

Table E-1: Confidence Interval of Routing Overhead with Pause Time=0

	-			-		
packet/seco	Min	2.4661	2.4776	2.3913	2.4021	2.1456
nd	Max					
.	C C	2.4852	2.4934	2.4059	2.4389	2.1758
Ten sources	Confiden	VCAR_Q_A CC	VCAR_Q_M AX	CC	VCAR_R_M AX	AODV
each one	ce					
sends two	Interval					
packets/seco	Min	2.0050	2.0143	1.9441	1.9529	1.7047
nd	Max					
	-	2.0205	2.0272	1.9560	1.9828	1.7298
Ten sources	Confiden	VCAR_Q_A	VCAR_Q_M	VCAR_R_A	VCAR_R_M	AODV
each one	се					
sends four	Interval					
packets/seco	Min					
		1.8309	1.8395	1.7745	1.7826	1.7463
nd	Max					
		1.8452	1.8514	1.7855	1.8103	1.7725
Ten sources	Confiden	VCAR_Q_A	VCAR_Q_M	VCAR_R_A	VCAR_R_M	AODV
each one	се		AX		AX	
sends six	Interval					
packets/seco	Min					
		1.1051	1.1186	1.0190	1.0326	0.9693
nd	Max	1.1269	1.1366	1.0356	1.0745	1.0088
Fifteen	Confiden	VCAR_Q_A	VCAR_Q_M	VCAR_R_A	VCAR_R_M	AODV
		CC	AX	CC	AX	
sources each	ce					
one sends	Interval					
one	Min	2 1105	2 1203	2 0464	2 0557	2 0055
packet/seco	Max	2.1105	2.1205	2.0404	2.0337	2.0000
nd		2.1269	2.1339	2.0589	2.0872	2.0351

Fifteen	Confiden	VCAR_Q_A	VCAR_Q_M	VCAR_R_A	VCAR_R_M	AODV
sources each	ce		AX		AX	
one sends	Interval					
two	Min					
nackets/seco	Max	2.0805	2.0903	2.0164	2.0257	1.9755
puckets, seed	IVIAX					
nd		2 0969	2 1030	2 0280	2 0572	2 0051
Fifteen	Confiden	VCAR_Q_A	VCAR_Q_M	VCAR_R_A	VCAR_R_M	AODV
a a ura a a a a b		СС	AX	СС	AX	
sources each	ce					
one sends	Interval					
four	Min					
		1.1074	1.1219	1.0205	1.0342	0.9751
packets/seco	Max					
nd						
		1.1291	1.1400	1.0372	1.0763	1.0149
Fifteen	Confiden	VCAR_Q_A CC	VCAR_Q_M AX	VCAR_R_A CC	VCAR_R_M AX	AODV
sources each	ce					
one sends six	Interval					
packets/seco	Min	1 4765	1 4979	1 3589	1 3790	1.3142
nd	Max	1.1705	1.1373	1.5505	1.3750	1.5112
		1.5055	1.5221	1.3811	1.4350	1.3678

Table E-2: Confidence Interval of Routing overhead with Pause Time=300

120

Five sources	Confiden	VCAR_Q_A	VCAR_Q_M	VCAR_R_A	VCAR_R_M	AODV
each one	се					
sends one	Interval					
packet/seco	Min	1.3476	1.3822	1.3033	1.3102	1.2522
nd	Max	1,3987	1.4300	1.3337	1.3494	1.2766
Five sources	Confiden	VCAR_Q_A	VCAR_Q_M	VCAR_R_A	VCAR_R_M	AODV
each one	се					
sends two	Interval					
packets/seco	Min	1 /1958	1 53/2	1 1/167	1 //5//3	1 3886
nd	Max	1 5526	1 5872	1 4804	1 4978	1 4156
Five sources	Confiden	VCAR_Q_A	VCAR_Q_M	VCAR_R_A	VCAR_R_M	AODV
each one	се					
sends four	Interval					
packets/seco	Min	1 6785	1 7216	1 6233	1 6319	1 5745
nd	Max	1 7422	1 7810	1 6612	1 6807	1 6051
Five sources	Confiden	VCAR_Q_A	VCAR_Q_M	VCAR_R_A	VCAR_R_M	AODV
each one	се					
sends six	Interval					
packets/seco	Min	1.9002	1.9490	1.8378	1.8475	1.7869
nd	Max	1.9723	2.0163	1.8807	1.9027	1.8216
Ten sources	Confiden	VCAR_Q_A	VCAR_Q_M	VCAR_R_A	VCAR_R_M	AODV
each one	се					
sends one	Interval					

packet/seco	Min	1.7968	1.8429	1.7378	1.7469	1.6808
nd	Max	4.0050	1 0000	4 7700	4 7002	4 7405
		1.8650	1.9066	1.7783	1.7992	1./135
Ten sources	Confiden	VCAR_Q_A CC	VCAR_Q_M AX	VCAR_R_A CC	VCAR_R_M AX	AODV
each one	се					
sends two	Interval					
packets/seco	Min	1,4608	1,4983	1 4128	1 4203	1,4007
nd	Max	1.1000	1.1505	1.1120	1.1205	1.1007
	IVIAX	1 5162	1 5501	1 1/158	1 /628	1 /1279
Ten sources	Confiden	VCAR_Q_A	VCAR_Q_M	VCAR_R_A	VCAR_R_M	AODV
		CC	AX	CC	AX	
each one	ce					
sends four	Interval					
packets/seco	Min					
		1.3796	1.4143	1.3258	1.3420	1.3028
nd	Max					
	1010X	1 4309	1 4623	1 3564	1 3814	1 3277
Ten sources	Confiden					
Ten sources	connach					AUD V
each one	се					
sends six	Interval					
packets/seco	Min					
		0.8220	0.8748	0.7083	0.7655	0.6997
nd	Max					
		0.8996	0.9473	0.7554	0.8250	0.7359
Fifteen	Confiden	VCAR_Q_A	VCAR_Q_M	VCAR_R_A	VCAR_R_M	AODV
		СС	AX	CC	AX	
sources each	се					
one sends	Interval					
one	Min					
		1.5377	1.5772	1.4766	1.4950	1.4744
packet/seco	Max					
nd						
		1.5960	1.6317	1.5114	1.5397	1.5031

Fifteen	Confiden	VCAR_Q_A	VCAR_Q_M	VCAR_R_A	VCAR_R_M	AODV
		CC	AX	CC	AX	
sources each	се					
one sends	Interval					
two	Min					
/		1.5677	1.6072	1.5066	1.5250	1.5044
packets/seco	Max					
nd						
		1.6260	1.6617	1.5414	1.5697	1.5331
Fifteen	Confiden	VCAR_Q_A	VCAR_Q_M	VCAR_R_A	VCAR_R_M	AODV
		СС	AX	CC	AX	
sources each	се					
one sends	Interval					
four	Min					
na ekota (soco		0.8236	0.8774	0.7094	0.7667	0.7018
раскетя/зесо	Max					
nd						
		0.9014	0.9502	0.7565	0.8263	0.7381
Fifteen	Confiden	VCAR_Q_A	VCAR_Q_M	VCAR_R_A	VCAR_R_M	AODV
sources each		CC	AX	CC	AX	
sources each	ce					
one sends six	Interval					
packets/seco	Min				<i>(</i>	
nd	Max	1.0981	1.1714	0.9446	1.0222	0.9114
	IVIAX	1.2019	1.2686	1.0074	1.1018	0.9586

APPENDIX F: 95% CONFIDENCE INTERVAL OF ENERGY

CONSUMPTION PERCENTAGE WHEN α=0.50

Table F-1: Confidence Interval of Energy Consumption Percentage with Pause Time=0

Five sources	Confiden	VCAR_Q_A	VCAR_Q_M	VCAR_R_A	VCAR_R_M	AODV
anch ana	CO	CC	AX	CC	AX	
each one	Le					
sends one	Interval					
packet/seco	Min			10.100	10	
nd	Max	21.260	22.016	19.120	19.736	27.272
na	IVIdX	21.895	22.621	19.835	20.391	27.879
Five sources	Confiden	VCAR_Q_A	VCAR_Q_M	VCAR_R_A	VCAR_R_M	AODV
		СС	AX	CC	AX	
each one	се					
sends two	Interval					
packets/seco	Min	72 011	24 659	21 /11/	22 105	20 109
nd	Max	23.011	24.038	21.414	22.105	30.408
		24.522	25.335	22.215	22.838	31.085
Five sources	Confiden	VCAR_Q_A	VCAR_Q_M	VCAR_R_A	VCAR_R_M	AODV
oach ono	60	CC	AX	CC	AX	
each one	LE					
sends four	Interval					
packets/seco	Min	28,335	29,343	25,483	26,305	34.027
nd	Max					0
		29.181	30.149	26.436	27.177	34.784
Five sources	Confiden	VCAR_Q_A	VCAR_Q_M	VCAR_R_A	VCAR_R_M	AODV
each one	ce		AX		AX	
sends six	Interval					

packets/seco	Min					
		34.568	34.918	30.324	31.303	41.172
nd	Max					
		35.601	35.878	31.458	32.340	42.089
Ten sources	Confiden	VCAR_Q_A	VCAR_Q_M	VCAR_R_A	VCAR_R_M	AODV
		CC	AX	CC	AX	
each one	се					
	Intonial					
senus one	Interval					
packet/seco	Min					
puenet, seee		27.256	28.226	24.512	25.303	34.090
nd	Max					
		28.070	29.001	25.429	26.142	34.848
Ten sources	Confiden	VCAR_Q_A	VCAR_Q_M	VCAR_R_A	VCAR_R_M	AODV
		СС	AX	СС	AX	
each one	ce					
sends two	Interval					
in aliata (as as	N 41:					
packets/seco	IVIIN	20 200	29 665		26 671	40 09E
nd	Max	50.500	58.005	50.560	50.071	49.065
na	IVIAA	39,536	39,728	37,954	37,887	50,178
Ten sources	Confiden	VCAR Q A	VCAR Q M	VCAR R A	VCAR R M	AODV
		CC	AX	cc	AX	_
each one	ce					
sends four	Interval					
packets/seco	Min					
a d		59.099	59.803	56.494	56.968	68.142
na	Iviax		61 447	E9 607		
Top sources	Confiden					
Ten sources	Connuen					AUDV
each one	ce					
sends six	Interval					
packets/seco	Min					
		61.584	62.983	58.240	59.357	70.547
nd	Max					
		63.424	64.714	60.418	61.324	72.116

125

Fifteen	Confiden	VCAR_Q_A	VCAR_Q_M	VCAR_R_A	VCAR_R_M	AODV
sources each	се		AX		AX	
one sends	Interval					
one	Min	46 216	49 451	43 905	46 014	59 216
packet/seco	Max	101210	101101	101000	101011	551210
nd		47 687	50 813	45 659	47 573	60 455
Fifteen	Confiden	VCAR_Q_A	VCAR_Q_M	VCAR_R_A	VCAR_R_M	AODV
sources each	се					
one sends	Interval					
two	Min	55.927	58.888	53.483	55.006	68.241
packets/seco	Max					
nd		57 599	60 443	55 483	56 793	69 649
Fifteen	Confiden	VCAR_Q_A	VCAR_Q_M	VCAR_R_A	VCAR_R_M	AODV
sources each	се	СС	AX	СС	AX	
one sends	Interval					
four	Min	62.554	67 509	60.084	62.020	74 221
packets/seco	Max	05.554	07.598	00.984	02.950	74.221
nd						
		65.453	69.373	63.265	64.979	75.815
Fifteen	Confiden	VCAR_Q_A CC	VCAR_Q_M AX	VCAR_R_A CC	VCAR_R_M AX	AODV
sources each	ce					
one sends six	Interval					
packets/seco	Min	72.220	73.742	69.537	70.906	82.351
nd	Max	74.378	75.768	72.138	73.256	84.202

Five sources	Confiden	VCAR_Q_A	VCAR_Q_M	VCAR_R_A	VCAR_R_M	AODV
each one	ce	CC	AX		AX	
sends one	Interval					
packet/seco	Min					
		15.135	16.246	13.820	14.315	19.951
nd	Max	15 509	16 652	14 102	14 607	20 406
Five sources	Confiden	VCAR O A	VCAR O M	VCAR R A	VCAR R M	20.406 AODV
		CC	AX	CC	AX	
each one	се					
sends two	Interval					
packets/seco	Min					
p		16.952	18.195	15.478	16.032	22.644
nd	Max					
		17.369	18.650	15.795	16.360	23.161
	0 0 1					
Five sources	Confiden	VCAR_Q_A	VCAR_Q_M AX	VCAR_R_A	VCAR_R_M	AODV
Five sources each one	Confiden ce	VCAR_Q_A CC	VCAR_Q_M AX	VCAR_R_A CC	VCAR_R_M AX	AODV
Five sources each one sends four	Confiden ce Interval	VCAR_Q_A CC	VCAR_Q_M AX	VCAR_R_A CC	VCAR_R_M AX	AODV
Five sources each one sends four packets/seco	Confiden ce Interval Min	VCAR_Q_A CC	VCAR_Q_M AX	VCAR_R_A CC	VCAR_R_M AX	AODV
Five sources each one sends four packets/seco	Confiden ce Interval Min	VCAR_Q_A CC 20.172	VCAR_Q_M AX 21.652	VCAR_R_A CC 18.419	VCAR_R_M AX 19.079	AODV 25.543
Five sources each one sends four packets/seco nd	Confiden ce Interval Min Max	VCAR_Q_A CC 20.172	VCAR_Q_M AX 21.652	VCAR_R_A CC 18.419	VCAR_R_M AX 19.079	AODV 25.543
Five sources each one sends four packets/seco nd	Confiden ce Interval Min Max	VCAR_Q_A CC 20.172 20.669	VCAR_Q_M AX 21.652 22.193	VCAR_R_A CC 18.419 18.796	VCAR_R_M AX 19.079 19.469	AODV 25.543 26.126 AODV
Five sources each one sends four packets/seco nd Five sources	Confiden ce Interval Min Max Confiden	VCAR_Q_A CC 20.172 20.669 VCAR_Q_A CC	VCAR_Q_M AX 21.652 22.193 VCAR_Q_M AX	VCAR_R_A CC 18.419 18.796 VCAR_R_A CC	VCAR_R_M AX 19.079 19.469 VCAR_R_M AX	AODV 25.543 26.126 AODV
Five sources each one sends four packets/seco nd Five sources each one	Confiden ce Interval Min Max Confiden ce	VCAR_Q_A CC 20.172 20.669 VCAR_Q_A CC	VCAR_Q_M AX 21.652 22.193 VCAR_Q_M AX	VCAR_R_A CC 18.419 18.796 VCAR_R_A CC	VCAR_R_M AX 19.079 19.469 VCAR_R_M AX	AODV 25.543 26.126 AODV
Five sources each one sends four packets/seco nd Five sources each one sends six	Confiden ce Interval Min Max Confiden ce Interval	VCAR_Q_A CC 20.172 20.669 VCAR_Q_A CC	VCAR_Q_M AX 21.652 22.193 VCAR_Q_M AX	VCAR_R_A CC 18.419 18.796 VCAR_R_A CC	VCAR_R_M AX 19.079 19.469 VCAR_R_M AX	AODV 25.543 26.126 AODV
Five sources each one sends four packets/seco nd Five sources each one sends six packet/seco	Confiden ce Interval Min Max Confiden ce Interval Min	VCAR_Q_A CC 20.172 20.669 VCAR_Q_A CC	VCAR_Q_M AX 21.652 22.193 VCAR_Q_M AX	VCAR_R_A CC 18.419 18.796 VCAR_R_A CC	VCAR_R_M AX 19.079 19.469 VCAR_R_M AX	AODV 25.543 26.126 AODV
Five sources each one sends four packets/seco nd Five sources each one sends six packet/seco	Confiden ce Interval Min Max Confiden ce Interval Min	VCAR_Q_A CC 20.172 20.669 VCAR_Q_A CC 24.610	VCAR_Q_M AX 21.652 22.193 VCAR_Q_M AX 25.766	VCAR_R_A CC 18.419 18.796 VCAR_R_A CC 21.919	VCAR_R_M AX 19.079 19.469 VCAR_R_M AX 22.703	AODV 25.543 26.126 AODV 31.341
Five sources each one sends four packets/seco nd Five sources each one sends six packet/seco nd	Confiden ce Interval Min Max Confiden ce Interval Min Max	VCAR_Q_A CC 20.172 20.669 VCAR_Q_A CC 24.610 25.216	VCAR_Q_M AX 21.652 22.193 VCAR_Q_M AX 25.766 26.410	VCAR_R_A CC 18.419 18.796 VCAR_R_A CC 21.919 22.367	VCAR_R_M AX 19.079 19.469 VCAR_R_M AX 22.703 23.168	AODV 25.543 26.126 AODV 31.341 32.056

Table F-2: Confidence Interval of Energy Consumption Percentage with Pause Time=300

Ten sources	Confiden	VCAR_Q_A	VCAR_Q_M	VCAR_R_A	VCAR_R_M	AODV
each one	се		AX		AX	
sends one	Interval					
packet/seco	Min	19.404	20.828	17.718	18.352	27.330
nd	Max	19.882	21.348	18.080	18.727	27.954
Ten sources	Confiden	VCAR_Q_A	VCAR_Q_M	VCAR_R_A	VCAR_R_M	AODV
each one	се					
sends two	Interval					
packets/seco	Min	27.330	28.531	26.445	26.597	39.374
nd	Max	28.002	29.244	26.985	27.141	40.273
Ten sources	Confiden	VCAR_Q_A CC	VCAR_Q_M AX	VCAR_R_A CC	VCAR_R_M AX	AODV
each one	ce					
sends four	Interval					
packets/seco	Min	54.369	56.061	50.244	53.210	60.807
nd	Max	55.707	57.462	51.272	54.298	62.055
Ten sources	Confiden	VCAR_Q_A	VCAR_Q_M AX	VCAR_R_A	VCAR_R_M AX	AODV
each one	се					
sends six	Interval					
packets/seco	Min	55.504	56.515	54.324	54.637	68.417
nd	Max	56.869	57.928	55.435	55.755	69.684
Fifteen	Confiden	VCAR_Q_A CC	VCAR_Q_M AX	VCAR_R_A CC	VCAR_R_M AX	AODV
sources each	се					
one sends	Interval					

one	Min					
		44.325	46.405	42.791	43.956	53.507
packet/seco	Max					
nd						
nu		45,489	47,640	43,728	44,898	54.956
Fifteen	Confiden	VCAR Q A	VCAR Q M	VCAR R A	VCAR R M	AODV
		cc	AX	сс	AX	
sources each	ce					
one sends	Interval					
bc	N 4 ¹ -					
two	IVIIN	54 022	55 600	51 072	52 877	64 000
packets/seco	Max	54.025	55.055	51.075	52.077	04.055
[····,···						
nd						
		55.352	57.091	52.149	53.958	65.517
Fifteen	Confiden	VCAR_Q_A	VCAR_Q_M	VCAR_R_A	VCAR_R_M	AODV
		CC	AX	CC	AX	
sources each	се					
one sends	Interval					
	interval					
four	Min					
		61.671	62.795	58.360	60.708	73.183
packets/seco	Max					
na		62 199	64 264	50 504	61.050	74 576
Fifteen	Confiden	VCAR O A	VCAR O M	VCAR R A	VCAR R M	AODV
i iiteeni	connach	CC	AX	CC	AX	1000
sources each	ce					
one sends six	Interval					
packets/seco	Min	70.400	70 704	67 022	60,600	07 505
nd	Max	70.400	70.794	07.033	09.099	02.383
	IVIUA	72.132	72.564	68.009	71.125	83.961

